[1] | Adams B et al. 2018 arXiv:1808.00848 [hep-ex] |
[2] | Quintans C 2022 Few-Body Syst. 63 72 | The New AMBER Experiment at the CERN SPS
[3] | Aguilar A C et al. 2019 Eur. Phys. J. A 55 190 | Pion and kaon structure at the electron-ion collider
[4] | Brodsky S J et al. 2020 Int. J. Mod. Phys. E 29 2030006 | Strong QCD from Hadron Structure Experiments
[5] | Chen X R, Guo F K, Roberts C D, and Wang R 2020 Few-Body Syst. 61 43 | Selected Science Opportunities for the EicC
[6] | Anderle D P et al. 2021 Front. Phys. (Beijing) 16 64701 | Electron-ion collider in China
[7] | Arrington J et al. 2021 J. Phys. G 48 075106 | Revealing the structure of light pseudoscalar mesons at the electron–ion collider
[8] | Khalek R A et al. 2022 Nucl. Phys. A 1026 122447 | Science Requirements and Detector Concepts for the Electron-Ion Collider
[9] | Wang R and Chen X R 2022 Few-Body Syst. 63 48 | The Current Status of Electron Ion Collider in China
[10] | Carman D S, Gothe R W, Mokeev V I, Roberts C D 2023 Particles 6 416 | Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass
[11] | Machleidt R and Entem D R 2011 Phys. Rep. 503 1 | Chiral effective field theory and nuclear forces
[12] | Aad G et al. 2012 Phys. Lett. B 716 1 | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
[13] | Chatrchyan S et al. 2012 Phys. Lett. B 716 30 | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
[14] | Englert F 2014 Rev. Mod. Phys. 86 843 | Nobel Lecture: The BEH mechanism and its scalar boson
[15] | Higgs P W 2014 Rev. Mod. Phys. 86 851 | Nobel Lecture: Evading the Goldstone theorem
[16] | Roberts C D 2017 Few-Body Syst. 58 5 | Perspective on the Origin of Hadron Masses
[17] | Roberts C D and Schmidt S M 2020 Eur. Phys. J. Spec. Top. 229 3319 | Reflections upon the emergence of hadronic mass
[18] | Roberts C D 2020 Symmetry 12 1468 | Empirical Consequences of Emergent Mass
[19] | Krein G and Peixoto T C 2020 Few-Body Syst. 61 49 | Femtoscopy of the Origin of the Nucleon Mass
[20] | Roberts C D 2021 AAPPS Bull. 31 6 | On mass and matter
[21] | Roberts C D, Richards D G, Horn T, and Chang L 2021 Prog. Part. Nucl. Phys. 120 103883 | Insights into the emergence of mass from studies of pion and kaon structure
[22] | Binosi D 2022 Few-Body Syst. 63 42 | Emergent Hadron Mass in Strong Dynamics
[23] | Papavassiliou J 2022 Chin. Phys. C 46 112001 | Emergence of mass in the gauge sector of QCD*
[24] | Ding M H, Roberts C D, and Schmidt S M 2023 Particles 6 57 | Emergence of Hadron Mass and Structure
[25] | Roberts C D 2022 arXiv:2211.09905 [hep-ph] | Origin of the Proton Mass
[26] | Ferreira M N and Papavassiliou J 2023 Particles 6 312 | Gauge Sector Dynamics in QCD
[27] | Bhagwat M S, Chang L, Liu Y X, Roberts C D, and Tandy P C 2007 Phys. Rev. C 76 045203 | Flavor symmetry breaking and meson masses
[28] | Brodsky S J, Roberts C D, Shrock R, Tandy P C 2010 Phys. Rev. C 82 022201(R) | New perspectives on the quark condensate
[29] | Qin S X, Roberts C D, and Schmidt S M 2014 Phys. Lett. B 733 202 | Ward–Green–Takahashi identities and the axial-vector vertex
[30] | Corden M et al. 1980 Phys. Lett. B 96 417 | Production of muon pairs in the continuum region by 39.5 GeV/c π±, K±, p and p¯ beams incident on a tungsten target
[31] | Badier J et al. 1983 Z. Phys. C 18 281 | Experimental determination of the π meson structure functions by the Drell-Yan mechanism
[32] | Betev B et al. 1985 Z. Phys. C 28 15 | Observation of anomalous scaling violation in muon pair production by 194 GeV/c π−-tungsten interactions
[33] | Conway J S et al. 1989 Phys. Rev. D 39 92 | Experimental study of muon pairs produced by 252-GeV pions on tungsten
[34] | Amendolia S R et al. 1984 Phys. Lett. B 146 116 | A measurement of the pion charge radius
[35] | Amendolia S R et al. 1986 Nucl. Phys. B 277 168 | A measurement of the space-like pion electromagnetic form factor
[36] | Volmer J et al. 2001 Phys. Rev. Lett. 86 1713 | Measurement of the Charged Pion Electromagnetic Form Factor
[37] | Horn T et al. 2006 Phys. Rev. Lett. 97 192001 | Determination of the Pion Charge Form Factor at and
[38] | Tadevosyan V et al. 2007 Phys. Rev. C 75 055205 | Determination of the pion charge form factor for 0.60–1.60 GeV
[39] | Blok H P et al. 2008 Phys. Rev. C 78 045202 | Charged pion form factor between and 2.45 . I. Measurements of the cross section for the reaction
[40] | Huber G et al. 2008 Phys. Rev. C 78 045203 | Charged pion form factor between and . II. Determination of, and results for, the pion form factor
[41] | Holt R J and Roberts C D 2010 Rev. Mod. Phys. 82 2991 | Nucleon and pion distribution functions in the valence region
[42] | Peng J C and Qiu J W 2016 Phys. Dark Universe 4(3) 34 |
[43] | Dove J et al. 2021 Nature 590 561 | The asymmetry of antimatter in the proton
[44] | Gao F, Chang L, Liu Y X, Roberts C D, and Tandy P C 2017 Phys. Rev. D 96 034024 | Exposing strangeness: Projections for kaon electromagnetic form factors
[45] | Chen M Y, Ding M H, Chang L, and Roberts C D 2018 Phys. Rev. D 98 091505(R) | Mass dependence of pseudoscalar meson elastic form factors
[46] | Ding M H, Raya K, Binosi D, Chang L, Roberts C D, and Schmidt S M 2020 Chin. Phys. C 44 031002 | Drawing insights from pion parton distributions
[47] | Ding M H, Raya K, Binosi D, Chang L, Roberts C D, and Schmidt S M 2020 Phys. Rev. D 101 054014 | Symmetry, symmetry breaking, and pion parton distributions
[48] | Cui Z F, Ding M, Gao F, Raya K, Binosi D, Chang L, Roberts C D, Rodríguez-Quintero J, and Schmidt S M 2020 Eur. Phys. J. C 80 1064 | Kaon and pion parton distributions
[49] | Dokshitzer Y L 1977 Sov. Phys.-JETP 46 641 |
[50] | Gribov V N and Lipatov L N 1971 Phys. Lett. B 37 78 | Deep inelastic electron scattering in perturbation theory
[51] | Lipatov L N 1975 Sov. J. Nucl. Phys. 20 94 |
[52] | Altarelli G and Parisi G 1977 Nucl. Phys. B 126 298 | Asymptotic freedom in parton language
[53] | Cui Z F, Zhang J L, Binosi D, de Soto F, Mezrag C, Papavassiliou J, Roberts C D, Rodríguez-Quintero J, Segovia J, and Zafeiropoulos S 2020 Chin. Phys. C 44 083102 | Effective charge from lattice QCD *
[54] | Cui Z F, Ding M, Morgado J M, Raya K, Binosi D, Chang L, Papavassiliou J, Roberts C D, Rodrı́guez-Quintero J, and Schmidt S M 2022 Eur. Phys. J. A 58 10 | Concerning pion parton distributions
[55] | Cui Z F, Ding M, Morgado J M, Raya K, Binosi D, Chang L, De Soto F, Roberts C D, Rodrı́guez-Quintero J, and Schmidt S M 2022 Phys. Rev. D 105 L091502 | Emergence of pion parton distributions
[56] | Grunberg G 1980 Phys. Lett. B 95 70 [Erratum: 1982 Phys. Lett. B 110 501] | Renormalization group improved perturbative QCD
[57] | Grunberg G 1984 Phys. Rev. D 29 2315 | Renormalization-scheme-invariant QCD and QED: The method of effective charges
[58] | Dokshitzer Y L 1998 arXiv:hep-ph/9812252 | Perturbative QCD theory (includes our knowledge of alpha_s)
[59] | Raya K, Cui Z F, Chang L, Morgado J M, Roberts C D, and Rodríguez-Quintero J 2022 Chin. Phys. C 46 013105 | Revealing pion and kaon structure via generalised parton distributions *
[60] | Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 | The QCD running coupling
[61] | Deur A, Burkert V, Chen J P, and Korsch W 2022 Particles 5 171 | Experimental Determination of the QCD Effective Charge αg1(Q)
[62] | Deur A, Brodsky S J, and Roberts C D 2023 arXiv:2303.00723 [hep-ph] | QCD Running Couplings and Effective Charges
[63] | Aicher M, Schäfer A, and Vogelsang W 2010 Phys. Rev. Lett. 105 252003 | Soft-Gluon Resummation and the Valence Parton Distribution Function of the Pion
[64] | Barry P C, Ji C R, Sato N, and Melnitchouk W 2021 Phys. Rev. Lett. 127 232001 | Global QCD Analysis of Pion Parton Distributions with Threshold Resummation
[65] | Joó B, Karpie J, Orginos K, Radyushkin A V, Richards D G, Sufian R S, and Zafeiropoulos S 2019 Phys. Rev. D 100 114512 | Pion valence structure from Ioffe-time parton pseudodistribution functions
[66] | Sufian R S, Karpie J, Egerer C, Orginos K, Qiu J W, and Richards D G 2019 Phys. Rev. D 99 074507 | Pion valence quark distribution from matrix element calculated in lattice QCD
[67] | Alexandrou C, Bacchio S, Cloet I, Constantinou M, Hadjiyiannakou K, Koutsou G, and Lauer C 2021 Phys. Rev. D 104 054504 | Pion and kaon from lattice QCD and PDF reconstruction from Mellin moments
[68] | Belitsky A and Radyushkin A 2005 Phys. Rep. 418 1 | Unraveling hadron structure with generalized parton distributions
[69] | Mezrag C 2022 Few-Body Syst. 63 62 | An Introductory Lecture on Generalised Parton Distributions
[70] | Mezrag C 2023 Particles 6 262 | Generalised Parton Distributions in Continuum Schwinger Methods: Progresses, Opportunities and Challenges
[71] | Xu S S, Chang L, Roberts C D, and Zong H S 2018 Phys. Rev. D 97 094014 | Pion and kaon valence-quark parton quasidistributions
[72] | Zhang J L, Raya K, Chang L, Cui Z F, Morgado J M, Roberts C D, and Rodrı́guez-Quintero J 2021 Phys. Lett. B 815 136158 | Measures of pion and kaon structure from generalised parton distributions
[73] | Cui Z F, Binosi D, Roberts C D, and Schmidt S M 2021 Phys. Lett. B 822 136631 | Pion charge radius from pion+electron elastic scattering data
[74] | Lepage G and Brodsky S J 1979 Phys. Rev. Lett. 43 545 [Erratum: 1979 Phys. Rev. Lett. 43 1625] | Exclusive Processes in Quantum Chromodynamics: The Form Factors of Baryons at Large Momentum Transfer
[75] | Efremov A V and Radyushkin A V 1980 Phys. Lett. B 94 245 | Factorization and asymptotic behaviour of pion form factor in QCD
[76] | Lepage G P and Brodsky S J 1980 Phys. Rev. D 22 2157 | Exclusive processes in perturbative quantum chromodynamics
[77] | Polyakov M V and Schweitzer P 2018 Int. J. Mod. Phys. A 33 1830025 | Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that
[78] | Masuda M et al. 2016 Phys. Rev. D 93 032003 | Study of pair production in single-tag two-photon collisions
[79] | Kumano S, Song Q T, and Teryaev O V 2018 Phys. Rev. D 97 014020 | Hadron tomography by generalized distribution amplitudes in the pion-pair production process and gravitational form factors for pion
[80] | Shastry V, Broniowski W, and Arriola E R 2022 Phys. Rev. D 106 114035 | Generalized quasi-, Ioffe-time-, and pseudodistributions of the pion in the Nambu–Jona-Lasinio model
[81] | Xing Z B, Ding M H, and Chang L 2023 Phys. Rev. D 107 (3) L031502 | Glimpse into the pion gravitational form factor
[82] | Chen C, Chang L, Roberts C D, Wan S L, Schmidt S M, and Wilson D J 2013 Phys. Rev. C 87 045207 | Features and flaws of a contact interaction treatment of the kaon
[83] | Qin S X, Chen C, Mezrag C, and Roberts C D 2018 Phys. Rev. C 97 015203 | Off-shell persistence of composite pions and kaons
[84] | Dally E, Hauptman J, Kubic J et al. 1980 Phys. Rev. Lett. 45 232 | Direct Measurement of the Negative-Kaon Form Factor
[85] | Amendolia S et al. 1986 Phys. Lett. B 178 435 | A measurement of the kaon charge radius
[86] | Badier J et al. 1980 Phys. Lett. B 93 354 | Measurement of the structure function ratio using the Drell-Yan process
[87] | Punjabi V, Perdrisat C F, Jones M K, Brash E J, and Carlson C E 2015 Eur. Phys. J. A 51 79 | The structure of the nucleon: Elastic electromagnetic form factors
[88] | Gao H and Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002 | The proton charge radius
[89] | Cui Z F, Binosi D, Roberts C D, and Schmidt S M 2022 Chin. Phys. C 46 122001 | Hadron and light nucleus radii from electron scattering*
[90] | Lu Y, Chang L, Raya K, Roberts C D, and Rodrı́guez-Quintero J 2022 Phys. Lett. B 830 137130 | Proton and pion distribution functions in counterpoint