[1] | Pezzè L and Smerzi A 2018 Rev. Mod. Phys. 90 035005 | Quantum metrology with nonclassical states of atomic ensembles
[2] | Tóth G and Apellaniz I 2014 J. Phys. A 47 424006 | Quantum metrology from a quantum information science perspective
[3] | Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 | Statistical distance and the geometry of quantum states
[4] | Zhang L J, Datta A, and Walmsley I A 2015 Phys. Rev. Lett. 114 210801 | Precision Metrology Using Weak Measurements
[5] | Aharonov Y, Albert D Z, and Vaidman L 1988 Phys. Rev. Lett. 60 1351 | How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100
[6] | Aharonov Y and Vaidman L 1990 Phys. Rev. A 41 11 | Properties of a quantum system during the time interval between two measurements
[7] | Hosten O and Kwiat P 2008 Science 319 787 | Observation of the Spin Hall Effect of Light via Weak Measurements
[8] | Dressel J, Malik M, Miatto F M, Jordan A N, and Boyd R W 2014 Rev. Mod. Phys. 86 307 | Colloquium : Understanding quantum weak values: Basics and applications
[9] | Zhang J, Wu C W, Xie Y, Wu W, and Chen P X 2021 Chin. Phys. B 30 033201 | Scheme to measure the expectation value of a physical quantity in weak coupling regime*
[10] | Dixon P B, Starling D J, Jordan A N, and Howell J C 2009 Phys. Rev. Lett. 102 173601 | Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
[11] | Wu C W, Zhang J, Xie Y, Ou B Q, Chen T, Wu W, and Chen P X 2019 Phys. Rev. A 100 062111 | Scheme and experimental demonstration of fully atomic weak-value amplification
[12] | Chen G, Aharon N, Sun Y N, Zhang Z H, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F, and Guo G C 2018 Nat. Commun. 9 93 | Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states
[13] | Fang C, Huang J Z, Yu Y, Li Q, and Zeng G 2016 J. Phys. B 49 175501 | Ultra-small time-delay estimation via a weak measurement technique with post-selection
[14] | Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, and Guo G C 2013 Phys. Rev. Lett. 111 033604 | Phase Estimation with Weak Measurement Using a White Light Source
[15] | Li H J, Huang J Z, Yu Y et al. 2018 Appl. Phys. Lett. 112 231901 | High-precision temperature measurement based on weak measurement using nematic liquid crystals
[16] | Egan P and Stone J A 2012 Opt. Lett. 37 4991 | Weak-value thermostat with 02 mK precision
[17] | Viza G I, Martinez-Rincon J, Howland G A, Frostig H, Shomroni I, Dayan B, and Howell J C 2013 Opt. Lett. 38 2949 | Weak-values technique for velocity measurements
[18] | Xu L, Liu Z, Datta A, Knee G C, Lundeen J S, Lu Y Q, and Zhang L 2020 Phys. Rev. Lett. 125 080501 | Approaching Quantum-Limited Metrology with Imperfect Detectors by Using Weak-Value Amplification
[19] | Kedem Y 2012 Phys. Rev. A 85 060102(R) | Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values
[20] | Jordan A N, Martinez-Rincon J, and Howell J C 2014 Phys. Rev. X 4 011031 | Technical Advantages for Weak-Value Amplification: When Less Is More
[21] | Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032 | When Amplification with Weak Values Fails to Suppress Technical Noise
[22] | Wu S J and Li Y 2011 Phys. Rev. A 83 052106 | Weak measurements beyond the Aharonov-Albert-Vaidman formalism
[23] | Koike T and Tanaka S 2011 Phys. Rev. A 84 062106 | Limits on amplification by Aharonov-Albert-Vaidman weak measurement
[24] | Turek Y, Kobayashi H, Akutsu T, Sun C P, and Shikano Y 2015 New J. Phys. 17 083029 | Post-selected von Neumann measurement with Hermite–Gaussian and Laguerre–Gaussian pointer states
[25] | Nakamura K, Nishizawa A, and Fujimoto M K 2012 Phys. Rev. A 85 012113 | Evaluation of weak measurements to all orders
[26] | Pang S S, Alonso J R G, Brun T A, and Jordan A N 2016 Phys. Rev. A 94 012329 | Protecting weak measurements against systematic errors