[1] | Kipnis N 2012 History of the Principle of Interference of Light (Birkhäuser) |
[2] | Michelson A A and Morley E W 1887 Am. J. Sci. 3 333 | On the relative motion of the Earth and the luminiferous ether
[3] | Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102 | Observation of Gravitational Waves from a Binary Black Hole Merger
[4] | Weiss R 2018 Rev. Mod. Phys. 90 040501 | Nobel Lecture: LIGO and the discovery of gravitational waves I
[5] | Barish B C 2018 Rev. Mod. Phys. 90 040502 | Nobel Lecture: LIGO and gravitational waves II
[6] | Thorne K S 2018 Rev. Mod. Phys. 90 040503 | Nobel Lecture: LIGO and gravitational waves III
[7] | Rugar D, Budakian R, Mamin H J, and Chui B W 2004 Nature 430 329 | Single spin detection by magnetic resonance force microscopy
[8] | Bachtold A, Moser J, and Dykman M I 2022 Rev. Mod. Phys. 94 045005 | Mesoscopic physics of nanomechanical systems
[9] | Xu B, Zhang P C, Zhu J K, Liu Z H, Eicher A, Zheng X Q, Lee J, Dash A, More S, Wu S, Wang Y N, Jia H, Naik A, Bachtold A, Yang R, Feng P X L, and Wang Z H 2022 ACS Nano 16 15545 | Nanomechanical Resonators: Toward Atomic Scale
[10] | Wang Z H, Fang J W, Zhang P C, and Yang R 2021 Sci. Chin. Inf. Sci. 64 206401 | Nanomechanics: emerging opportunities for future computing
[11] | Nguyen C T C 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 251 | MEMS technology for timing and frequency control
[12] | O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, and Cleland A N 2010 Nature 464 697 | Quantum ground state and single-phonon control of a mechanical resonator
[13] | Kotler S, Peterson G A, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, Aumentado J, and Teufel J D 2021 Science 372 622 | Direct observation of deterministic macroscopic entanglement
[14] | Mercier de Lépinay L, Ockeloen-Korppi C F, Woolley M J, and Sillanpää M A 2021 Science 372 625 | Quantum mechanics–free subsystem with mechanical oscillators
[15] | 2018 CODATA Value: Bohr Radius (The NIST Reference on Constants, Units, and Uncertainty) NIST 20 May 2019 |
[16] | Wang Z H, Xu B, Pei S H, Zhu J K, Wen T, Jiao C Y, Li J, Zhang M D, and Xia J 2022 Sci. Chin. Inf. Sci. 65 211401 | Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications
[17] | Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, and McEuen P L 2007 Science 315 490 | Electromechanical Resonators from Graphene Sheets
[18] | Zhu J K, Xu B, Xiao F, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Xia J, and Wang Z H 2022 Nano Lett. 22 5107 | Frequency Scaling, Elastic Transition, and Broad-Range Frequency Tuning in WSe2 Nanomechanical Resonators
[19] | Lee J, Wang Z H, He K L, Yang R, Shan J, and Feng P X L 2018 Sci. Adv. 4 eaao6653 | Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range
[20] | Verdeyen J T 1995 Laser Electronics 3rd edn (Prentice-Hall) |
[21] | Stevenson A J, Gray M B, Bachor H A, and McClelland D E 1993 Appl. Opt. 32 3481 | Quantum-noise-limited interferometric phase measurements
[22] | Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, and Lipson M 2015 Phys. Rev. Appl. 3 044005 | On-Chip Optical Squeezing
[23] | Aasi J et al. 2013 Nat. Photon. 7 613 | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
[24] | The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962 | A gravitational wave observatory operating beyond the quantum shot-noise limit
[25] | Michaud-Belleau V, Deschênes J D, and Genest J 2022 IEEE J. Quantum Electron. 58 6100211 | Reaching the True Shot-Noise-Limited Phase Sensitivity in Self-Heterodyne Interferometry
[26] | Saraf S, Urbanek K, Byer R L, and King P J 2005 Opt. Lett. 30 1195 | Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier
[27] | Castelvecchi D 2019 Nature 575 269 | How big is the proton? Particle-size puzzle leaps closer to resolution
[28] | Antognini A et al. 2013 Science 339 417 | Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
[29] | Cummings J P and Simonsen S H 1970 Am. Mineral. 55 90 |
[30] | Moreira R L, Teixeira N G, Andreeta M R B, Hernandes A C, and Dias A 2010 Cryst. Growth & Des. 10 1569 | Polarized Micro-Raman Scattering of CaNb2 O6 Single Crystal Fibers Obtained by Laser Heated Pedestal Growth
[31] | Feng G L, Li L, and Xu D P 2021 Crystals 11 928 | Optical Properties of CaNb2O6 Single Crystals Grown by OFZ*
[32] | Duman U, Aycibin M, and Özdemir Ö F 2021 Phys. Status Solidi B 258 2100416 | The Electronic, Structural, and Optical Properties of CaNb2 O6 Compound: Theoretical Study
[33] | Qin J K, Xiao H, Zhu C Y, Zhen L, and Xu C Y 2022 Adv. Opt. Mater. 10 2201627 | Low‐Symmetry 2D Perovskite CaNb2 O6 for Polarization‐Sensitive UV Photodetection
[34] | Wang Z H, Jia H, Zheng X Q, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, and Feng P X L 2015 Nanoscale 7 877 | Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies
[35] | Liang Y C, Zhu J K, Xiao F, Xu B, Wen T, Wu S, Li J, Xia J, and Wang Z H 2021 IEEE J. Electron Devices Soc. 9 1269 | Two-Dimensional Inverters Based on MoS₂-hBN-Graphene Heterostructures Enabled by a Layer-by-Layer Dry-Transfer Method
[36] | Wang Z H and Feng P X L 2016 Sci. Rep. 6 28923 | Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways
[37] | Zhu J K, Zhang P C, Yang R, and Wang Z H 2022 Sci. Chin. Inf. Sci. 65 122409 | Analyzing electrostatic modulation of signal transduction efficiency in MoS2 nanoelectromechanical resonators with interferometric readout
[38] | Wang Z H, Lee J, and Feng P X L 2014 Nat. Commun. 5 5158 | Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators
[39] | Cleland A N 2013 Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer Science & Business Media) |
[40] | Ballman A A, Porto S P S, and Yariv A 1963 J. Appl. Phys. 34 3155 | Calcium Niobate Ca(NbO3 )2 —A New Laser Host Crystal
[41] | Lee J, Wang Z H, He K L, Shan J, and Feng P X L 2013 ACS Nano 7 6086 | High Frequency MoS2 Nanomechanical Resonators
[42] | Bleszynski-Jayich A C, Shanks W E, and Harris J G E 2008 Appl. Phys. Lett. 92 013123 | Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin
[43] | Montinaro M, Mehlin A, Solanki H S, Peddibhotla P, Mack S, Awschalom D D, and Poggio M 2012 Appl. Phys. Lett. 101 133104 | Feedback cooling of cantilever motion using a quantum point contact transducer
[44] | Poggio M, Degen C L, Mamin H J, and Rugar D 2007 Phys. Rev. Lett. 99 017201 | Feedback Cooling of a Cantilever’s Fundamental Mode below 5 mK
[45] | Cho I S, Bae S T, Yim D K, Kim D W, and Hong K S 2009 J. Am. Ceram. Soc. 92 506 | Preparation, Characterization, and Photocatalytic Properties of CaNb2 O6 Nanoparticles
[46] | Wang Z H, Yang R, and Feng P X L 2021 Nanoscale 13 18089 | Thermal hysteresis controlled reconfigurable MoS2 nanomechanical resonators
[47] | Zheng X Q, Lee J, and Feng P X L 2017 Microsyst. & Nanoeng. 3 17038 | Hexagonal boron nitride nanomechanical resonators with spatially visualized motion
[48] | Zheng X Q, Lee J, and Feng P X L 2015 IEEE Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21–25 June 2015, Anchorage, AK, USA, pp 1393–1396 | Hexagonal boron nitride (h-BN) nanomechanical resonators with temperature-dependent multimode operations
[49] | Xu B, Zhu J K, Xiao F, Liu N, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Wan H J, Xiao X, Xia J, and Wang Z H 2022 ACS Nano 16 20229 | Electrically Tunable MXene Nanomechanical Resonators Vibrating at Very High Frequencies
[50] | Hiebert W K, Vick D, Sauer V, and Freeman M R 2010 J. Micromech. Microeng. 20 115038 | Optical interferometric displacement calibration and thermomechanical noise detection in bulk focused ion beam-fabricated nanoelectromechanical systems
[51] | Azak N O, Shagam M Y, Karabacak D M, Ekinci K L, Kim D H, and Jang D Y 2007 Appl. Phys. Lett. 91 093112 | Nanomechanical displacement detection using fiber-optic interferometry
[52] | Kouh T, Karabacak D, Kim D H, and Ekinci K L 2005 Appl. Phys. Lett. 86 013106 | Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems
[53] | LaHaye M D, Buu O, Camarota B, and Schwab K C 2004 Science 304 74 | Approaching the Quantum Limit of a Nanomechanical Resonator
[54] | Losby J, Burgess J A, Diao Z, Fortin D C, Hiebert W K, and Freeman M R 2012 J. Appl. Phys. 111 07D305 | Thermo-mechanical sensitivity calibration of nanotorsional magnetometers
[55] | Rajauria S, Ozsun O, Lawall J, Yakhot V, and Ekinci K L 2011 Phys. Rev. Lett. 107 174501 | Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows
[56] | Wang Z H, Jia H, Zheng X Q, Yang R, Ye G J, Chen X H, and Feng P X L 2016 Nano Lett. 16 5394 | Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy
[57] | Wang Z H, Lee J, He K L, Shan J, and Feng P X L 2014 Sci. Rep. 4 3919 | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators
[58] | Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P, and Feng P X L 2017 ACS Appl. Mater. & Interfaces 9 43090 | Ultrawide Band Gap β-Ga2 O3 Nanomechanical Resonators with Spatially Visualized Multimode Motion
[59] | Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H, and van der Zant H S J 2008 Nat. Phys. 4 785 | Motion detection of a micromechanical resonator embedded in a d.c. SQUID
[60] | Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, and Steele G A 2014 Nat. Nanotechnol. 9 820 | Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
[61] | Kim P H, Doolin C, Hauer B D, MacDonald A J, Freeman M R, Barclay P E, and Davis J P 2013 Appl. Phys. Lett. 102 053102 | Nanoscale torsional optomechanics
[62] | Basarir O, Bramhavar S, and Ekinci K L 2010 Appl. Phys. Lett. 97 253114 | Near-field optical transducer for nanomechanical resonators
[63] | Basarir O, Bramhavar S, Basilio-Sanchez G, Morse T, and Ekinci K L 2010 Opt. Lett. 35 1792 | Sensitive micromechanical displacement detection by scattering evanescent optical waves
[64] | Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Ong P J, McEuen P L, Parpia J M, and Craighead H G 2012 Nano Lett. 12 4681 | Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems
[65] | Davidovikj D, Slim J J, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G, and Venstra W J 2016 Nano Lett. 16 2768 | Visualizing the Motion of Graphene Nanodrums
[66] | Zhu J K, Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Ren Z M, Wei X Y, Huang W, Xia J, and Wang Z H 2023 Small (in press) |
[67] | Wang Z H and Feng P X L 2014 Appl. Phys. Lett. 104 103109 | Dynamic range of atomically thin vibrating nanomechanical resonators