[1] | Satzinger K J, Liu Y J, Smith A et al. 2021 Science 374 1237 | Realizing topologically ordered states on a quantum processor
[2] | Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, and Lukin M D 2021 Science 374 1242 | Probing topological spin liquids on a programmable quantum simulator
[3] | King A D, Raymond J, Lanting T et al. 2022 arXiv:2207.13800 [quant-ph] | Quantum critical dynamics in a 5000-qubit programmable spin glass
[4] | Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885 | Many-body physics with ultracold gases
[5] | Motta M, Sun C, Tan A T K, O'Rourke M J, Ye E, Minnich A J, Brandão G S L, and Chan G K L 2020 Nat. Phys. 16 205 | Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution
[6] | Nishi H, Kosugi T, and Matsushita Y I 2021 npj Quantum Inf. 7 85 | Implementation of quantum imaginary-time evolution method on NISQ devices by introducing nonlocal approximation
[7] | Yin S, Mai P, and Zhong F 2014 Phys. Rev. B 89 144115 | Universal short-time quantum critical dynamics in imaginary time
[8] | Zhang S Y, Yin S, and Zhong F 2014 Phys. Rev. E 90 042104 | Generalized dynamic scaling for quantum critical relaxation in imaginary time
[9] | Janssen H K, Schaub B, and Schmittmann B 2014 Z. Phys. B: Condens. Matter 73 539 | New universal short-time scaling behaviour of critical relaxation processes
[10] | Li Z B, Schülke L, and Zheng B 1995 Phys. Rev. Lett. 74 3396 | Dynamic Monte Carlo Measurement of Critical Exponents
[11] | Li Z, Schülke L, and Zheng B 1996 Phys. Rev. E 53 2940 | Finite-size scaling and critical exponents in critical relaxation
[12] | Zheng B 1998 Int. J. Mod. Phys. B 12 1419 | Monte Carlo Simulations of Short-Time Critical Dynamics
[13] | Ying H P, Luo H J, Schülke L, and Zheng B 1998 Mod. Phys. Lett. B 12 1237 | Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model
[14] | Zheng B 1996 Phys. Rev. Lett. 77 679 | Generalized Dynamic Scaling for Critical Relaxations
[15] | Shu Y R, Yin S, and Yao D X 2017 Phys. Rev. B 96 094304 | Universal short-time quantum critical dynamics of finite-size systems
[16] | Shu Y R and Yin S 2020 Phys. Rev. B 102 104425 | Short-imaginary-time quantum critical dynamics in the spin chain
[17] | Shu Y R, Jian S K, and Yin S 2022 Phys. Rev. Lett. 128 020601 | Nonequilibrium Dynamics of Deconfined Quantum Critical Point in Imaginary Time
[18] | Shu Y R and Yin S 2022 Phys. Rev. B 105 104420 | Dual dynamic scaling in deconfined quantum criticality
[19] | Okano K, Schülke L, Yamagishi K, and Zheng B 1997 Nucl. Phys. B 485 727 | Universality and scaling in short-time critical dynamics
[20] | Jaster A, Mainville J, Schülke L, and Zheng B 1999 J. Phys. A 32 1395 | Short-time critical dynamics of the three-dimensional Ising model
[21] | Domb C and Lebowitz J L 1986 Phase Transitions and Critical Phenomena (New York: Academic Press) vol 10 |
[22] | Zhou N J and Zheng B 2007 Europhys. Lett. 78 56001 | Non-equilibrium critical dynamics with domain interface
[23] | Zhou N J and Zheng B 2008 Phys. Rev. E 77 051104 | Nonequilibrium critical dynamics with domain wall and surface
[24] | Yoshinaga A, Hakoshima H, Imoto T, Matsuzaki Y, and Hamazaki R 2022 Phys. Rev. Lett. 129 090602 | Emergence of Hilbert Space Fragmentation in Ising Models with a Weak Transverse Field
[25] | Hart O and Nandkishore R 2022 Phys. Rev. B 106 214426 | Hilbert space shattering and dynamical freezing in the quantum Ising model
[26] | Balducci F, Gambassi A, Lerose A, Scardicchio A, and Vanoni C 2022 Phys. Rev. Lett. 129 120601 | Localization and Melting of Interfaces in the Two-Dimensional Quantum Ising Model
[27] | Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 | Theory of dynamic critical phenomena
[28] | Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) |
[29] | Sondhi S L, Girvin S M, Carini J P, and Shahar D 1997 Rev. Mod. Phys. 69 315 | Continuous quantum phase transitions
[30] | Vojta M 2003 Rep. Prog. Phys. 66 2069 | Quantum phase transitions
[31] | Sandvik A W 2010 AIP Conf. Proc. 1297 135 | AIP Conference Proceedings
[32] | Farhi E, Gosset D, Hen I, Sandvik A W, Shor P, Young A P, and Zamponi F 2012 Phys. Rev. A 86 052334 | Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs