[1] | Hubbard J 1963 Proc. R. Soc. A 276 238 | Electron correlations in narrow energy bands
[2] | Hubbard J 1964 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 84 455 | Exchange splitting in ferromagnetic nickel
[3] | Gebhard F 1997 Metal—Insulator Transitions: Models and Methods. Springer Tracts in Modern Physics vol 137 pp 1–48 | Springer Tracts in Modern Physics
[4] | McWhan D B, Rice T M, and Remeika J P 1969 Phys. Rev. Lett. 23 1384 | Mott Transition in Cr-Doped
[5] | Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H, and Davis J 2004 Nature 430 1001 | A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2
[6] | da Silva Neto E H, Aynajian P, Frano A et al. 2014 Science 343 393 | Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates
[7] | Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, and Wang Y 2016 Nat. Phys. 12 1047 | Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates
[8] | Shimura T, Inaguma Y, Nakamura T, Itoh M, and Morii Y 1995 Phys. Rev. B 52 9143 | Structure and magnetic properties of ( A =Ca and Ba)
[9] | Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666 | Quasi-Two-Dimensional Mott Transition System
[10] | Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, and Johnston D C 1994 Phys. Rev. B 49 9198 | Structural and magnetic studies of
[11] | Dhital C, Khadka S, Yamani Z et al. 2012 Phys. Rev. B 86 100401 | Spin ordering and electronic texture in the bilayer iridate Sr Ir O
[12] | Kim B J, Jin H, Moon S J et al. 2008 Phys. Rev. Lett. 101 076402 | Novel Mott State Induced by Relativistic Spin-Orbit Coupling in
[13] | Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, and Arima T 2009 Science 323 1329 | Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2 IrO4
[14] | Kim Y K, Krupin O, Denlinger J, Bostwick A, Rotenberg E, Zhao Q, Mitchell J, Allen J, and Kim B 2014 Science 345 187 | Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet
[15] | Kim J, Casa D, Upton M et al. 2012 Phys. Rev. Lett. 108 177003 | Magnetic Excitation Spectra of Probed by Resonant Inelastic X-Ray Scattering: Establishing Links to Cuprate Superconductors
[16] | Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502 | The challenge of spin–orbit-tuned ground states in iridates: a key issues review
[17] | Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826 | Relationship between the parent charge transfer gap and maximum transition temperature in cuprates
[18] | Weber C, Yee C, Haule K, and Kotliar G 2012 Europhys. Lett. 100 37001 | Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy
[19] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[20] | Roy S B 2019 Mott Insulators (Bristol: IOP Publishing) |
[21] | Okada Y, Walkup D, Lin H et al. 2013 Nat. Mater. 12 707 | Imaging the evolution of metallic states in a correlated iridate
[22] | Sun Z X, Guevara J M, Sykora S, Pärschke E M, Manna K, Maljuk A, Wurmehl S, van den Brink J, Büchner B, and Hess C 2021 Phys. Rev. Res. 3 023075 | Evidence for a percolative Mott insulator-metal transition in doped
[23] | Hu L L, Yang M, Wu Y Let al. 2019 Phys. Rev. B 99 094307 | Strong pseudospin-lattice coupling in : Coherent phonon anomaly and negative thermal expansion
[24] | Manna K, Aslan-Cansever G, Maljuk A, Wurmehl S, Seiro S, and Büchner B 2020 J. Cryst. Growth 540 125657 | Flux growth of Sr+1Ir O3+1 (n = 1, 2, ∞) crystals
[25] | Battisti I, Fedoseev V, Bastiaans K M, De La T A, Perry R S, Baumberger F, and Allan M P 2017 Phys. Rev. B 95 235141 | Poor electronic screening in lightly doped Mott insulators observed with scanning tunneling microscopy
[26] | Ye C, Cai P, Yu R, Zhou X, Ruan W, Liu Q, Jin C, and Wang Y 2013 Nat. Commun. 4 1365 | Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator
[27] | Dai J X, Calleja E, Cao G, and McElroy K 2014 Phys. Rev. B 90 041102 | Local density of states study of a spin-orbit-coupling induced Mott insulator
[28] | Battisti I, Bastiaans K M, Fedoseev V et al. 2017 Nat. Phys. 13 21 | Universality of pseudogap and emergent order in lightly doped Mott insulators
[29] | Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z, Wilson S D, and Zeljkovic I 2019 Nat. Phys. 15 1267 | Atomic-scale fragmentation and collapse of antiferromagnetic order in a doped Mott insulator
[30] | Wang Z, Walkup D, Maximenko Y, Zhou W, Hogan T, Wang Z, Wilson S D, and Madhavan V 2019 npj Quantum Mater. 4 43 | Doping induced Mott collapse and possible density wave instabilities in (Sr1−xLax)3Ir2O7
[31] | Kim B, Liu P, and Franchini C 2017 Phys. Rev. B 95 024406 | Magnetic properties of bilayer : Role of epitaxial strain and oxygen vacancies
[32] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[33] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[34] | Park H J, Sohn C H, Jeong D, Cao G, Kim K, Moon S, Jin H, Cho D Y, and Noh T 2014 Phys. Rev. B 89 155115 | Phonon-assisted optical excitation in the narrow bandgap Mott insulator
[35] | Wang Q, Cao Y, Waugh J, Park S, Qi T, Korneta O, Cao G, and Dessau D 2013 Phys. Rev. B 87 245109 | Dimensionality-controlled Mott transition and correlation effects in single-layer and bilayer perovskite iridates
[36] | Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395 | Imaging the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 Mott insulator
[37] | Tokura Y and Nagaosa N 2000 Science 288 462 | Orbital Physics in Transition-Metal Oxides
[38] | Moretti Sala M, Rossi M, Al-Zein A et al. 2014 Phys. Rev. B 90 085126 | Crystal field splitting in iridates probed by x-ray Raman spectroscopy
[39] | Moon S J, Jin H, Kim K W et al. 2008 Phys. Rev. Lett. 101 226402 | Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in Transition Metal Oxides ( , 2, and )
[40] | Zeb M A and Kee H Y 2012 Phys. Rev. B 86 085149 | Interplay between spin-orbit coupling and Hubbard interaction in SrIrO and related perovskite oxides
[41] | Kim J, Said A, Casa D, Upton M, Gog T, Daghofer M, Jackeli G, Van Den Brink J, Khaliullin G, and Kim B 2012 Phys. Rev. Lett. 109 157402 | Large Spin-Wave Energy Gap in the Bilayer Iridate : Evidence for Enhanced Dipolar Interactions Near the Mott Metal-Insulator Transition
[42] | Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T, and Takagi H 2012 Phys. Rev. B 86 174414 | Weak antiferromagnetism of band in bilayer iridate Sr Ir O
[43] | King P D C, Takayama T, Tamai A et al. 2013 Phys. Rev. B 87 241106 | Spectroscopic indications of polaronic behavior of the strong spin-orbit insulator Sr Ir O
[44] | Nagai I, Yoshida Y, Ikeda S, Matsuhata H, Kito H, and Kosaka M 2007 J. Phys.: Condens. Matter 19 136214 | Canted antiferromagnetic ground state in Sr3 Ir2 O7
[45] | Han X J, Liu Y, Liu Z Y, Li X, Chen J, Liao H J, Xie Z Y, Normand B, and Xiang T 2016 New J. Phys. 18 103004 | Charge dynamics of the antiferromagnetically ordered Mott insulator
[46] | Golor M, Reckling T, Classen L, Scherer M M, and Wessel S 2014 Phys. Rev. B 90 195131 | Ground-state phase diagram of the half-filled bilayer Hubbard model
[47] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 | Effective Hamiltonian for the superconducting Cu oxides
[48] | Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574 | Strength of correlations in electron- and hole-doped cuprates
[49] | Yee C H and Kotliar G 2014 Phys. Rev. B 89 094517 | Tuning the charge-transfer energy in hole-doped cuprates
[50] | Leshen J, Kavai M, Giannakis I, Kaneko Y, Tokura Y, Mukherjee S, Lee W C, and Aynajian P 2019 Commun. Phys. 2 36 | Emergent charge order near the doping-induced Mott-insulating quantum phase transition in Sr3Ru2O7
[51] | Gunkel F, Christensen D V, Chen Y Z, and Pryds N 2020 Appl. Phys. Lett. 116 120505 | Oxygen vacancies: The (in)visible friend of oxide electronics
[52] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[53] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple