[1] | Sterman G F and Weinberg S 1977 Phys. Rev. Lett. 39 1436 | Jets from Quantum Chromodynamics
[2] | Altheimer A, Arora S, Asquith L et al. 2012 J. Phys. G 39 063001 | Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks
[3] | Altheimer A, Arce A, Asquith L et al. 2014 Eur. Phys. J. C 74 2792 | Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012
[4] | Marzani S, Soyez G, and Spannowsky M 2019 Looking inside jets: an introduction to jet substructure and boosted-object phenomenology (Springer) |
[5] | Acharya S, Adamová D, Adler A et al. (ALICE collaboration) 2022 J. High Energy Phys. 2022(05) 061 | Measurements of the groomed and ungroomed jet angularities in pp collisions at $ \sqrt{s} $ = 5.02 TeV
[6] | Casalderrey-Solana J, Milhano G, Pablos D, and Rajagopal K 2020 J. High Energy Phys. 2020(01) 044 | Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma
[7] | Vitev I and Zhang B W 2010 Phys. Rev. Lett. 104 132001 | Jet Tomography of High-Energy Nucleus-Nucleus Collisions at Next-to-Leading Order
[8] | Vitev I, Wicks S, and Zhang B W 2008 J. High Energy Phys. 2008(11) 093 | A theory of jet shapes and cross sections: from hadrons to nuclei
[9] | Andrews H A, Apolinario L, Bertens R A et al. 2020 J. Phys. G 47 065102 | Novel tools and observables for jet physics in heavy-ion collisions
[10] | Acharya S, Adamová D, Adhya S P et al. (ALICE collaboration) 2020 Phys. Lett. B 802 135227 | Exploration of jet substructure using iterative declustering in pp and Pb–Pb collisions at LHC energies
[11] | Abdallah M S, Aboona B E, Adam J et al. (STAR collaboration) 2022 Phys. Rev. C 105 044906 | Differential measurements of jet substructure and partonic energy loss in Au Au collisions at GeV
[12] | Aaboud M, Abbott B, Abdinov O et al. (ATLAS collaboration) 2019 Phys. Rev. Lett. 123 042001 | Comparison of Fragmentation Functions for Jets Dominated by Light Quarks and Gluons from and Collisions in ATLAS
[13] | Wang X N and Zhu Y 2013 Phys. Rev. Lett. 111 062301 | Medium Modification of Jets in High-Energy Heavy-Ion Collisions
[14] | Majumder A 2013 Phys. Rev. C 88 014909 | Incorporating space-time within medium-modified jet-event generators
[15] | Zapp K, Ingelman G, Rathsman J, Stachel J, and Wiedemann U A 2009 Eur. Phys. J. C 60 617 | A Monte Carlo model for ‘jet quenching’
[16] | Zhang B W, Wang E, and Wang X N 2004 Phys. Rev. Lett. 93 072301 | Heavy Quark Energy Loss in a Nuclear Medium
[17] | Dai W, Wang S, Zhang S L, Zhang B W, and Wang E 2020 Chin. Phys. C 44 104105 | Transverse momentum balance and angular distribution of dijets in Pb + Pb collisions *
[18] | Dai W, Li M Z, Zhang B W, and Wang E 2022 arXiv:2205.14668 [hep-ph] | Exposing the dead-cone effect of jet quenching in QCD medium
[19] | Wang S, Dai W, Zhang B W, and Wang E 2019 Eur. Phys. J. C 79 789 | Diffusion of charm quarks in jets in high-energy heavy-ion collisions
[20] | Schenke B, Gale C, and Jeon S 2009 Phys. Rev. C 80 054913 | MARTINI: An event generator for relativistic heavy-ion collisions
[21] | Armesto N, Cunqueiro L, and Salgado C A 2009 Eur. Phys. J. C 63 679 | Q-PYTHIA: a medium-modified implementation of final state radiation
[22] | Dasgupta M, Fregoso A, Marzani S, and Powling A 2013 Eur. Phys. J. C 73 2623 | Jet substructure with analytical methods
[23] | Dasgupta M, Fregoso A, Marzani S, and Salam G P 2013 J. High Energy Phys. 2013(09) 029 | Towards an understanding of jet substructure
[24] | Larkoski A J, Marzani S, Soyez G, and Thaler J 2014 J. High Energy Phys. 2014(05) 146 | Soft drop
[25] | Acharya S, Adamová D, Adler A et al. (A Large Ion Collider Experiment, ALICE collaboration) 2022 Phys. Rev. Lett. 128 102001 | Measurement of the Groomed Jet Radius and Momentum Splitting Fraction in and Pb-Pb Collisions at
[26] | Tripathee A, Xue W, Larkoski A, Marzani S, and Thaler J 2017 Phys. Rev. D 96 074003 | Jet substructure studies with CMS open data
[27] | CMS collaboration 2016 Splitting Function Pp PbPb Collisions at 5.02 TeV. Report No. CMS-PAS-HIN-16-006 |
[28] | Kauder K (STAR collaboration) 2017 Nucl. Part. Phys. Proc. 289 137 | Measurement of the Shared Momentum Fraction z g using Jet Reconstruction in p+p and Au+Au Collisions with STAR
[29] | Chang N B, Cao S, and Qin G Y 2018 Phys. Lett. B 781 423 | Probing medium-induced jet splitting and energy loss in heavy-ion collisions
[30] | Chien Y T and Vitev I 2017 Phys. Rev. Lett. 119 112301 | Probing the Hardest Branching within Jets in Heavy-Ion Collisions
[31] | Kang Z B, Lee K, Liu X, Neill D, and Ringer F 2020 J. High Energy Phys. 2020(02) 054 | The soft drop groomed jet radius at NLL
[32] | Ringer F, Xiao B W, and Yuan F 2020 Phys. Lett. B 808 135634 | Can we observe jet P-broadening in heavy-ion collisions at the LHC?
[33] | Mehtar-Tani Y, Soto-Ontoso A, and Tywoniuk K 2020 Phys. Rev. D 101 034004 | Dynamical grooming of QCD jets
[34] | Caucal P, Soto-Ontoso A, and Takacs A 2022 Phys. Rev. D 105 114046 | Dynamically groomed jet radius in heavy-ion collisions
[35] | Caucal P, Soto-Ontoso A, and Takacs A 2021 J. High Energy Phys. 2021(07) 020 | Dynamical Grooming meets LHC data
[36] | ALICE collaboration 2022 arXiv:2204.10246 [nucl-ex] | Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at $\sqrt{s}=5.02$ TeV
[37] | Dreyer F A, Salam G P, and Soyez G 2018 J. High Energy Phys. 2018(12) 064 | The Lund jet plane
[38] | Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O, and Skands P Z 2015 Comput. Phys. Commun. 191 159 | An introduction to PYTHIA 8.2
[39] | Cacciari M, Salam G P, and Soyez G 2008 J. High Energy Phys. 2008(04) 063 | The anti- k t jet clustering algorithm
[40] | He Y Y, Luo T, Wang X N, and Zhu Y 2015 Phys. Rev. C 91 054908 | Linear Boltzmann transport for jet propagation in the quark-gluon plasma: Elastic processes and medium recoil
[41] | Cao S S, Luo T, Qin G Y, and Wang X N 2016 Phys. Rev. C 94 014909 | Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution
[42] | Cao S S, Luo T, Qin G Y, and Wang X N 2018 Phys. Lett. B 777 255 | Heavy and light flavor jet quenching at RHIC and LHC energies
[43] | Guo X F and Wang X N 2000 Phys. Rev. Lett. 85 3591 | Multiple Scattering, Parton Energy Loss, and Modified Fragmentation Functions in Deeply Inelastic Scattering
[44] | Zhang B W and Wang X N 2003 Nucl. Phys. A 720 429 | Multiple parton scattering in nuclei: beyond helicity amplitude approximation
[45] | Zhang B W, Wang E K, and Wang X N 2005 Nucl. Phys. A 757 493 | Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions
[46] | Pang L G, Wang Q, and Wang X N 2012 Phys. Rev. C 86 024911 | Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics
[47] | Pang L G, Hatta Y, Wang X N, and Xiao B W 2015 Phys. Rev. D 91 074027 | Analytical and numerical Gubser solutions of the second-order hydrodynamics
[48] | Lin Z W, Ko C M, Li B A, Zhang B, and Pal S 2005 Phys. Rev. C 72 064901 | Multiphase transport model for relativistic heavy ion collisions
[49] | Lin Z W and Zheng L 2021 Nucl. Sci. Tech. 32 113 | Further developments of a multi-phase transport model for relativistic nuclear collisions
[50] | Luo T, Cao S, He Y, and Wang X N 2018 Phys. Lett. B 782 707 | Multiple jets and γ-jet correlation in high-energy heavy-ion collisions
[51] | Zhang S L, Wang X N, and Zhang B W 2022 Phys. Rev. C 105 054902 | Quenching of jets tagged with bosons in high-energy nuclear collisions
[52] | Putschke J H, Kauder K, Khalaj E et al. 2019 arXiv:1903.07706 [nucl-th] | The JETSCAPE framework
[53] | Sjöstrand T 1986 Comput. Phys. Commun. 39 347 | The Lund Monte Carlo for jet fragmentation and e+e- physics - jetset version 6.2