Systems | Electrolyte | Temperature (electrolytes) (℃) | Temperature (batteries) (℃) | Average voltage (V) | Specific capacity (mAh$\cdot$g$^{-1}$) | Energy density (Wh$\cdot$kg$^{-1}$) | References |
---|---|---|---|---|---|---|---|
Na$_{0.44}$MnO$_{2}$ //PNZ | 10 m NaOH | $-20$ | $\sim$ $0.8$ (RT) | 67$_{\rm PNZ}$ (10 C) | 58.9$_{\rm total}$ (RT) | ||
Na$_{3}$V$_{2}$(PO$_{4})_{3}$// Na$_{3}$V$_{2}$(PO$_{4})_{3}$ (micro-batteries) | 17 m NaClO$_{4}$ | $-50$ | $-40$ | 1.5 (RT) | 16$_{\rm total}$ (mWh$\cdot$cm$^{-3}$) | 77$_{\rm total}$ (mWh$\cdot$cm$^{-3}$) (RT) | |
NiHCF//PT | 17 m NaClO$_{4}$ | $-31.3$ | $-40$ | $\sim$ $1$ (RT) | 85.6$_{\rm PT}$ (0.5 A$\cdot$g$^{-1}_{\rm PT}$) | 45.3$_{\rm total}$ (RT) | |
Na$_{3}$(VOPO$_{4})_{2}$ F// NaTi$_{2}$(PO$_{4})_{3}$ | 25 m NaFSI $+$ 10 m NaFTFSI | $-32$ | $-10$ | 1.44 (30 ℃) | 65$_{\rm cathode}$ (C/5) | 64$_{\rm total}$ (30 ℃) | |
Na$_{2}$CoFe(CN)$_{6}$// AC | 3.86 m CaCl$_{2}$ + 1 m NaClO$_{4}$ | $< -100$ | $-30$ | $\sim 1.05$ | 74.5$_{\rm cathode}$ (1 C) | ||
AC// NaTi$_{2}$(PO$_{4})_{3}$ | 3.5 m Mg(ClO$_{4})_{2}$ + 0.5 m NaClO$_{4}$ | $-122$ | $-60$ | $\sim 1.1$ | 83.2$_{\rm NTP}$ (0.2 C) | ||
AC// NaTi$_{2}$(PO$_{4})_{3}$ | 10 m NaClO$_{4}$- 0.3DMSO | $-130$ | $-50$ | $\sim 1.2$ | 68$_{\rm NTP}$ (0.5 C) | ||
PB-Na//AC | 2 m NaNO$_{3}+$ Super- Concentrated Sugar | $< -50$ | |||||
Na$_{0.44}$MnO$_{2}$/ Zn | 1 m NaAc-Et/Di | 0 | $\sim 1.1$ (25 ℃) | 44.5$_{\rm cathode}$ (50 mA$\cdot$g$^{-1}$) | 102$_{\rm cathode}$ (25 ℃) | ||
Na$_{3}$V$_{2}$(PO$_{4})_{3}$ /NiHCF// NaTi$_{2}$(PO$_{4})_{3}$ | NaClO$_{4}$: H$_{2}$O: urea: DMF = 1:2:2:1 | $< -50$ | |||||
LiMn$_{2}$O$_{4}$// NaTi$_{2}$(PO$_{4})_{3}$ | LiClO$_{4}$: NaClO$_{4}$: urea = 1:1:8 | 0 | 1.67 (RT) | 6$_{\rm total}$ (Ah) (10 A) (70% capacity retention relative to 25 ℃) | 100$_{\rm total}$ (RT) | ||
Na$_{3}$V$_{2}$(PO$_{4})_{3}$// NaTi$_{2}$(PO$_{4})_{3}$ | Molar ratio NaTFSI: H$_{2}$O: ADN = 1:1:2.5 | $-76$ | $-20$ | $\sim 1.2$ (RT) | $\sim 91_{\rm NVP}$ (1 C) | ||
Ni$_{2}$ZnHCF// PTCDI | 1 m NaNO$_{3}$-2:1 Gly–Di | $ < $ $-80$ | $-10$ | $\sim 0.65$ | $\sim$ $13.3_{\rm total}$ (100 mA$\cdot$g$^{-1}$) | ||
AC// NaTi$_{2}$(PO$_{4})_{3}$ | Na$_{2}$SO$_{4}$-SiO$_{2}$ hydrogel electrolyte | $-30$ | $\sim 1.18$ | 61.8$_{\rm NTP}$ (1 C) | |||
Na$_{3}$V$_{2}$(PO$_{4})_{3}$ nanofiber//Zn | 10 m NaClO$_{4}$-0.17 m Zn(CH$_{3}$COO)$_{2}$ -2wt% VC | $-20$ | 1.48 (RT) | 90$_{\rm total}$ (2 C) | |||
Na$_{2/3}$Mn$_{2/3}$Co$_{1/3}$ O$_{1.98}$ F$_{0.02}$// hard-carbon | 2 m NaTFSI- PEGMA-BEMA water-in-ionogel | $-25$ | 0.73 | 32$_{\rm total}$ (1 C) | 23.4 | ||
AC// PNTCDA | (NaClO$_{4})_{1.7}$- (H$_{2}$O)$_{5.5}$-(FA)$_{5.81}$ | $< -50$ | $-50$ | $\sim 0.9$ | 78.58$_{\rm PNTCDA}$ (RT) | ||
Ni(OH)$_{2}$// NaTi$_{2}$(PO$_{4})_{3}$ | 2 m NaClO$_{4}$ | $-20$ | 1.25 (RT) | $\sim$ $70_{\rm anode}$ (10 C) | 40.1$_{\rm total}$ (RT) |
[1] | Evans A, Strezov V, and Evans T J 2012 Renewable Sustainable Energy Rev. 16 4141 | Assessment of utility energy storage options for increased renewable energy penetration
[2] | Luo B, Ye D, and Wang L 2017 Adv. Sci. 4 1700104 | Recent Progress on Integrated Energy Conversion and Storage Systems
[3] | Grey C P and Tarascon J M 2017 Nat. Mater. 16 45 | Sustainability and in situ monitoring in battery development
[4] | Dunn B, Kamath H, and Tarascon J M 2011 Science 334 928 | Electrical Energy Storage for the Grid: A Battery of Choices
[5] | Goodenough J B 2013 Acc. Chem. Res. 46 1053 | Evolution of Strategies for Modern Rechargeable Batteries
[6] | Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, and Liu J 2011 Chem. Rev. 111 3577 | Electrochemical Energy Storage for Green Grid
[7] | Schmidt O, Hawkes A, Gambhir A, and Staffell I 2017 Nat. Energy 2 17110 | The future cost of electrical energy storage based on experience rates
[8] | Dai H L, Dong J, Wu M J, Hu Q M, Wang D N, Zuin L, Chen N, Lai C, Zhang G X, and Sun S H 2021 Angew. Chem. Int. Ed. 60 19852 | Cobalt‐Phthalocyanine‐Derived Molecular Isolation Layer for Highly Stable Lithium Anode
[9] | Kim H, Hong J, Park K Y, Kim H, Kim S W, and Kang K 2014 Chem. Rev. 114 11788 | Aqueous Rechargeable Li and Na Ion Batteries
[10] | Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, and Zhi C Y 2020 Chem. Soc. Rev. 49 180 | Voltage issue of aqueous rechargeable metal-ion batteries
[11] | Fang G Z, Zhou J, Pan A Q, and Liang S Q 2018 ACS Energy Lett. 3 2480 | Recent Advances in Aqueous Zinc-Ion Batteries
[12] | Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, and Zhu K 2013 Energy & Environ. Sci. 6 2093 | Aqueous rechargeable lithium batteries as an energy storage system of superfast charging
[13] | Bin D, Wang F, Tamirat A G, Suo L, Wang Y, Wang C, and Xia Y 2018 Adv. Energy Mater. 8 1703008 | Progress in Aqueous Rechargeable Sodium-Ion Batteries
[14] | Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C, Hu Y S, Xu K, and Wang C S 2017 Adv. Energy Mater. 7 1701189 | “Water‐in‐Salt” Electrolyte Makes Aqueous Sodium‐Ion Battery Safe, Green, and Long‐Lasting
[15] | Xie F, Lu Y X, Chen L Q, and Hu Y S 2021 Chin. Phys. Lett. 38 118401 | Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries
[16] | Wang M, Wang Q, Ding X, Wang Y, Xin Y, Singh P, Wu F, and Gao H 2022 Interdiscip. Mater. 1 373 | The prospect and challenges of sodium‐ion batteries for low‐temperature conditions
[17] | Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta A M, and Pietrucci F 2017 Phys. Rev. Lett. 119 245701 | Navigating at Will on the Water Phase Diagram
[18] | Leadbetter A J, Ward R C, Clark J W, Tucker P A, Matsuo T, and Suga H 1985 J. Chem. Phys. 82 424 | The equilibrium low‐temperature structure of ice
[19] | Wang X, Huang H, Zhou F, Das P, Wen P, Zheng S, Lu P, Yu Y, and Wu Z S 2021 Nano Energy 82 105688 | High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC
[20] | Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, and Wang Y 2022 Sci. Bull. 67 161 | All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte
[21] | Sun T J, Liu C, Wang J Y, Nian Q S, Feng Y Z, Zhang Y, Tao Z L, and Chen J 2020 Nano Res. 13 676 | A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range
[22] | Hribar B, Southall N T, Vlachy V, and Dill K A 2002 J. Am. Chem. Soc. 124 12302 | How Ions Affect the Structure of Water
[23] | Chua R, Cai Y, Lim P Q, Kumar S, Satish R, Jr W M, Ren H, Verma V, Meng S, Morris S A, Kidkhunthod P, Bai J, and Srinivasan M 2020 ACS Appl. Mater. & Interfaces 12 22862 | Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage
[24] | Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, and Chen J 2019 Angew. Chem. Int. Ed. 58 16994 | Aqueous Batteries Operated at −50 °C
[25] | Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, and Li C M 2022 ChemSusChem 15 e202201362 | Dilute Hybrid Electrolyte for Low‐Temperature Aqueous Sodium‐Ion Batteries
[26] | Wang H, Liu T, Du X, Wang J, Yang Y, Qiu H, Lu G, Li H, Chen Z, Zhao J, and Cui G 2022 Batteries Supercaps 5 e202200246 | Hybrid Electrolytes Enabling in‐situ Interphase Protection and Suppressed Electrode Dissolution for Aqueous Sodium‐Ion Batteries
[27] | Cheng Y G, Chi X W, Yang J H, and Liu Y 2021 J. Energy Storage 40 102701 | Cost attractive hydrogel electrolyte for low temperature aqueous sodium ion batteries
[28] | Liu S, Lei T, Song Q, Zhu J, and Zhu C 2022 ACS Appl. Mater. & Interfaces 14 11425 | High Energy, Long Cycle, and Superior Low Temperature Performance Aqueous Na–Zn Hybrid Batteries Enabled by a Low-Cost and Protective Interphase Film-Forming Electrolyte
[29] | Rong J Z, Cai T X, Bai Y Z, Zhao X, Wu T, Wu Y K, Zhao W, Dong W J, Xu S M, Chen J, and Huang F Q 2022 Cell Rep. Phys. Sci. 3 100805 | A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25°C
[30] | Zhu K, Sun Z, Li Z, Liu P, Chen X, and Jiao L 2022 Energy Storage Mater. 53 523 | Aqueous sodium ion hybrid batteries with ultra-long cycle life at -50 ℃
[31] | Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, and Xu K 2015 Science 350 938 | “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
[32] | Liang Y L, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, and Yao Y 2017 Nat. Mater. 16 841 | Universal quinone electrodes for long cycle life aqueous rechargeable batteries
[33] | Sun T J, Du H H, Zheng S B, Shi J Q, and Tao Z L 2021 Adv. Funct. Mater. 31 2010127 | High Power and Energy Density Aqueous Proton Battery Operated at − 90 ° C
[34] | Yue F, Tie Z W, Deng S Z, Wang S, Yang M, and Niu Z Q 2021 Angew. Chem. Int. Ed. 60 13882 | An Ultralow Temperature Aqueous Battery with Proton Chemistry
[35] | Chen S, Wang T, Ma L, Zhou B, Wu J, Zhu D, Li Y Y, Fan J, and Zhi C 2022 Chem (in press) | Aqueous rechargeable zinc air batteries operated at −110°C
[36] | Zhu K J, Li Z P, Sun Z Q, Liu P, Jin T, Chen X C, Li H X, Lu W B, and Jiao L F 2022 Small 18 2107662 | Inorganic Electrolyte for Low‐Temperature Aqueous Sodium Ion Batteries
[37] | Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, and Jiao L F 2022 Batteries Supercaps 5 e202200308 | Tailoring Pure Inorganic Electrolyte for Aqueous Sodium‐Ion Batteries Operating at −60 °C
[38] | Reber D, Kühnel R S, and Battaglia C 2019 ACS Mater. Lett. 1 44 | Suppressing Crystallization of Water-in-Salt Electrolytes by Asymmetric Anions Enables Low-Temperature Operation of High-Voltage Aqueous Batteries
[39] | Bu X D, Zhang Y R, Sun Y G, Su L J, Meng J N, Lu X G, and Yan X B 2020 J. Energy Chem. 49 198 | All-climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate
[40] | Zhang Q, Ma Y, Lu Y, Li L, Wan F, Zhang K, and Chen J 2020 Nat. Commun. 11 4463 | Modulating electrolyte structure for ultralow temperature aqueous zinc batteries
[41] | Bi H B, Wang X S, Liu H L, He Y L, Wang W J, Deng W J, Ma X L, Wang Y S, Rao W, Chai Y Q, Ma H, Li R, Chen J T, Wang Y, and Xue M Q 2020 Adv. Mater. 32 2000074 | A Universal Approach to Aqueous Energy Storage via Ultralow‐Cost Electrolyte with Super‐Concentrated Sugar as Hydrogen‐Bond‐Regulated Solute
[42] | Ao H S, Chen C Y, Hou Z G, Cai W L, Liu M K, Jin Y A, Zhang X, Zhu Y C, and Qian Y T 2020 J. Mater. Chem. A 8 14190 | Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries
[43] | Zhang X Q, Dong M F, Xiong Y L, Hou Z G, Ao H S, Liu M K, Zhu Y C, and Qian Y T 2020 Small 16 2003585 | Aqueous Rechargeable Li+ /Na+ Hybrid Ion Battery with High Energy Density and Long Cycle Life
[44] | Nian Q S, Liu S, Liu J, Zhang Q, Shi J Q, Liu C, Wang R, Tao Z L, and Chen J 2019 ACS Appl. Energy Mater. 2 4370 | All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance