[1] | Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) | Quantum Phase Transitions
[2] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 | Machine learning and the physical sciences
[3] | Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001 | Machine learning & artificial intelligence in the quantum domain: a review of recent progress
[4] | Carrasquilla J and Torlai G 2021 PRX Quantum 2 040201 | How To Use Neural Networks To Investigate Quantum Many-Body Physics
[5] | Carrasquilla J 2020 Adv. Phys.: X 5 1797528 | Machine learning for quantum matter
[6] | Uvarov A V, Kardashin A S, and Biamonte J D 2020 Phys. Rev. A 102 012415 | Machine learning phase transitions with a quantum processor
[7] | Bai X D, Zhao J, Han Y Y, Zhao J C, and Wang J G 2021 Phys. Rev. B 103 134203 | Learning single-particle mobility edges by a neural network based on data compression
[8] | Bohrdt A, Kim S, Lukin A, Rispoli M, Schittko R, Knap M, Greiner M, and Léonard J 2021 Phys. Rev. Lett. 127 150504 | Analyzing Nonequilibrium Quantum States through Snapshots with Artificial Neural Networks
[9] | Hsu Y T, Li X, Deng D L, and Sarma S D 2018 Phys. Rev. Lett. 121 245701 | Machine Learning Many-Body Localization: Search for the Elusive Nonergodic Metal
[10] | Zhang H L, Jiang S, Wang X, Zhang W G, Huang X Z, Ouyang X L, Yu Y F, Liu Y Q, Deng D L, and Duan L M 2022 Nat. Commun. 13 4993 | Experimental demonstration of adversarial examples in learning topological phases
[11] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[12] | Ch'ng K, Carrasquilla J, Melko R G, and Khatami E 2017 Phys. Rev. X 7 031038 | Machine Learning Phases of Strongly Correlated Fermions
[13] | Beach M J S, Golubeva A, and Melko R G 2018 Phys. Rev. B 97 045207 | Machine learning vortices at the Kosterlitz-Thouless transition
[14] | Venderley J, Khemani V, and Kim E A 2018 Phys. Rev. Lett. 120 257204 | Machine Learning Out-of-Equilibrium Phases of Matter
[15] | Deng D L, Li X, and Sarma S D 2017 Phys. Rev. B 96 195145 | Machine learning topological states
[16] | Sancho-Lorente T, Román-Roche J, and Zueco D 2021 arXiv:2109.02686 [quant-ph] | Quantum kernels to learn the phases of quantum matter
[17] | Driskell G, Lederer S, Bauer C, Trebst S, and Kim E A 2021 Phys. Rev. Lett. 127 046601 | Identification of Non-Fermi Liquid Physics in a Quantum Critical Metal via Quantum Loop Topography
[18] | Havlı́ček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M, and Gambetta J M 2019 Nature 567 209 | Supervised learning with quantum-enhanced feature spaces
[19] | Schindler F, Regnault N, and Neupert T 2017 Phys. Rev. B 95 245134 | Probing many-body localization with neural networks
[20] | Zhang W Z, Liu J Y, and Wei T C 2019 Phys. Rev. E 99 032142 | Machine learning of phase transitions in the percolation and models
[21] | Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. Lett. 120 066401 | Machine Learning Topological Invariants with Neural Networks
[22] | Miyajima Y, Murata Y, Tanaka Y, and Mochizuki M 2021 Phys. Rev. B 104 075114 | Machine learning detection of Berezinskii-Kosterlitz-Thouless transitions in -state clock models
[23] | Théveniaut H and Alet F 2019 Phys. Rev. B 100 224202 | Neural network setups for a precise detection of the many-body localization transition: Finite-size scaling and limitations
[24] | van Nieuwenburg E P L, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435 | Learning phase transitions by confusion
[25] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[26] | Kharkov Y A, Sotskov V E, Karazeev A A, Kiktenko E O, and Fedorov A K 2020 Phys. Rev. B 101 064406 | Revealing quantum chaos with machine learning
[27] | Wetzel S J 2017 Phys. Rev. E 96 022140 | Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders
[28] | Hu W J, Singh R R P, and Scalettar R T 2017 Phys. Rev. E 95 062122 | Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
[29] | Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790 | Identifying topological order through unsupervised machine learning
[30] | Huembeli P, Dauphin A, and Wittek P 2018 Phys. Rev. B 97 134109 | Identifying quantum phase transitions with adversarial neural networks
[31] | Broecker P, Assaad F F, and Trebst S 2017 arXiv: 1707.00663 [cond-mat.str-el] | Quantum phase recognition via unsupervised machine learning
[32] | Balabanov O and Granath M 2020 Phys. Rev. Res. 2 013354 | Unsupervised learning using topological data augmentation
[33] | Canabarro A, Fanchini F F, Malvezzi A L, Pereira R, and Chaves R 2019 Phys. Rev. B 100 045129 | Unveiling phase transitions with machine learning
[34] | Greplova E, Valenti A, Boschung G, Schäfer F, Lörch N, and Huber S D 2020 New J. Phys. 22 045003 | Unsupervised identification of topological phase transitions using predictive models
[35] | Wang J L, Zhang W Z, Hua T, and Wei T C 2021 Phys. Rev. Res. 3 013074 | Unsupervised learning of topological phase transitions using the Calinski-Harabaz index
[36] | Wang R, Ma Y G, Wada R, Chen L W, He W B, Liu H L, and Sun K J 2020 Phys. Rev. Res. 2 043202 | Nuclear liquid-gas phase transition with machine learning
[37] | Che Y M, Gneiting C, Liu T, and Nori F 2020 Phys. Rev. B 102 134213 | Topological quantum phase transitions retrieved through unsupervised machine learning
[38] | Shen J M, Li W, Deng S F, and Zhang T 2021 Phys. Rev. E 103 052140 | Supervised and unsupervised learning of directed percolation
[39] | Ni Q, Tang M, Liu Y, and Lai Y C 2019 Phys. Rev. E 100 052312 | Machine learning dynamical phase transitions in complex networks
[40] | Lee S S and Kim B J 2019 Phys. Rev. E 99 043308 | Confusion scheme in machine learning detects double phase transitions and quasi-long-range order
[41] | Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401 | Unsupervised Machine Learning and Band Topology
[42] | Tibaldi S, Magnifico G, Vodola D, and Ercolessi E 2022 arXiv:2202.09281 [cond-mat.supr-con] | Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions
[43] | Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402 | Unsupervised Learning of Non-Hermitian Topological Phases
[44] | Chen T, Kornblith S, Norouzi M, Hinton G, and I 2020 Proc. Machine Learning Res. 119 1597 |
[45] | Wang Y, Wang J, Cao Z, and Farimani A B, and 2022 Nat. Mach. Intell. 4 297 | Molecular contrastive learning of representations via graph neural networks
[46] | Yang Z, Song J, Yang M, Yao L, Zhang J, Shi H, Ji X, Deng Y, and Wang X 2021 Anal. Chem. 93 16947 | Cross-Modal Retrieval between13 C NMR Spectra and Structures for Compound Identification Using Deep Contrastive Learning
[47] | Liu C Y and Wang D W 2021 Phys. Rev. B 103 205107 | Random sampling neural network for quantum many-body problems
[48] | LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, and Jackel L D 1989 Neural Comput. 1 541 | Backpropagation Applied to Handwritten Zip Code Recognition
[49] | Onsager L 1944 Phys. Rev. 65 117 | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition
[50] | Mishra A, Ma M, Zhang F C, Guertler S, Tang L H, and Wan S 2004 Phys. Rev. Lett. 93 207201 | Directional Ordering of Fluctuations in a Two-Dimensional Compass Model
[51] | Wenzel S, Janke W, and Läuchli A M 2010 Phys. Rev. E 81 066702 | Re-examining the directional-ordering transition in the compass model with screw-periodic boundary conditions
[52] | Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 046701 | Quantum Monte Carlo with directed loops
[53] | Heeger A J, Kivelson S, Schrieffer J R, and Su W P 1988 Rev. Mod. Phys. 60 781 | Solitons in conducting polymers
[54] | Shen S Q 2017 Topological Phases in One Dimension, in Topological Insulators (Berlin: Springer) pp 81–90 |
[55] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[56] | Glasser I, Pancotti N, August M, Rodriguez I D, and Cirac J I 2018 Phys. Rev. X 8 011006 | Neural-Network Quantum States, String-Bond States, and Chiral Topological States
[57] | Cai Z and Liu J 2018 Phys. Rev. B 97 035116 | Approximating quantum many-body wave functions using artificial neural networks
[58] | Bachtis D, Aarts G, and Lucini B 2021 Phys. Rev. Res. 3 013134 | Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
[59] | Torlai G and Melko R G 2017 Phys. Rev. Lett. 119 030501 | Neural Decoder for Topological Codes
[60] | Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, and Carleo G 2018 Nat. Phys. 14 447 | Neural-network quantum state tomography