[1] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[2] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[3] | Chelikowsky J R, Jing X, Wu K, and Saad Y 1996 Phys. Rev. B 53 12071 | Molecular dynamics with quantum forces: Vibrational spectra of localized systems
[4] | Edelman A and Smith S T 1996 BIT Numer. Math 36 494 | On conjugate gradient-like methods for eigen-like problems
[5] | Teter M P, Payne M C, and Allan D C 1989 Phys. Rev. B 40 12255 | Solution of Schrödinger’s equation for large systems
[6] | Payne M C, Teter M P, Allan D C, Arias T A, and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients
[7] | Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471 | Unified Approach for Molecular Dynamics and Density-Functional Theory
[8] | Goedecker S 1999 Rev. Mod. Phys. 71 1085 | Linear scaling electronic structure methods
[9] | Baer R, Neuhauser D, and Rabani E 2013 Phys. Rev. Lett. 111 106402 | Self-Averaging Stochastic Kohn-Sham Density-Functional Theory
[10] | Jay L O, Kim H, Saad Y, and Chelikowsky J R 1999 Comput. Phys. Commun. 118 21 | Electronic structure calculations for plane-wave codes without diagonalization
[11] | Yang W T 1991 Phys. Rev. Lett. 66 1438 | Direct calculation of electron density in density-functional theory
[12] | Baroni S and Giannozzi P 1992 EPL (Europhys. Lett.) 17 547 | Towards Very Large-Scale Electronic-Structure Calculations
[13] | Li X P, Nunes R W, and Vanderbilt D 1993 Phys. Rev. B 47 10891 | Density-matrix electronic-structure method with linear system-size scaling
[14] | Sánchez-Portal D, Ordejon P, Artacho E, and Soler J M 1997 Int. J. Quantum Chem. 65 453 | Density-functional method for very large systems with LCAO basis sets
[15] | Mohr S, Ratcliff L E, Genovese L, Caliste D, Boulanger P, Goedecker S, and Deutsch T 2015 Phys. Chem. Chem. Phys. 17 31360 | Accurate and efficient linear scaling DFT calculations with universal applicability
[16] | Goringe C M, Hernández E, Gillan M J, and Bush I J 1997 Comput. Phys. Commun. 102 1 | Linear-scaling DFT-pseudopotential calculations on parallel computers
[17] | Hernández E, Gillan M J, and Goringe C M 1996 Phys. Rev. B 53 7147 | Linear-scaling density-functional-theory technique: The density-matrix approach
[18] | Hine N D M, Haynes P D, Mostofi A A, Skylaris C K, and Payne M C 2009 Comput. Phys. Commun. 180 1041 | Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP
[19] | VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, and Hutter J 2005 Comput. Phys. Commun. 167 103 | Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
[20] | Ghosh S and Suryanarayana P 2017 Comput. Phys. Commun. 216 109 | SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems
[21] | Soler J M, Artacho E, Gale J D, Garcı́a A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 | The SIESTA method for ab initio order- N materials simulation
[22] | Michaud-Rioux V, Zhang L, and Guo H 2016 J. Comput. Phys. 307 593 | RESCU: A real space electronic structure method
[23] | Wesolowski T A and Wang Y A 2013 Recent Progress in Orbital-Free Density Functional Theory (Singapore: World Scientific) |
[24] | Lignères V L and Carter E A 2005 An introduction to Orbital-Free Density Functional Theory (Berlin: Springer) p 137 |
[25] | Zhou B J, Ligneres V L, and Carter E A 2005 J. Chem. Phys. 122 044103 | Improving the orbital-free density functional theory description of covalent materials
[26] | Wang Y A and Carter E A 2002 Orbital-Free Kinetic-Energy Density Functional Theory (Berlin: Springer) p 117 |
[27] | Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 150 034106 | Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
[28] | Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 151 114116 | Energy window stochastic density functional theory
[29] | Chen M, Baer R, Neuhauser D, and Rabani E 2021 J. Chem. Phys. 154 204108 | Stochastic density functional theory: Real- and energy-space fragmentation for noise reduction
[30] | White A J and Collins L A 2020 Phys. Rev. Lett. 125 055002 | Fast and Universal Kohn-Sham Density Functional Theory Algorithm for Warm Dense Matter to Hot Dense Plasma
[31] | Yuan S J, De Raedt H, and Katsnelson M I 2010 Phys. Rev. B 82 115448 | Modeling electronic structure and transport properties of graphene with resonant scattering centers
[32] | Yuan S J, Roldán R, and Katsnelson M I 2011 Phys. Rev. B 84 035439 | Excitation spectrum and high-energy plasmons in single-layer and multilayer graphene
[33] | Logemann R, Reijnders K J A, Tudorovskiy T, Katsnelson M I, and Yuan S 2015 Phys. Rev. B 91 045420 | Modeling Klein tunneling and caustics of electron waves in graphene
[34] | Hams A and De Raedt H 2000 Phys. Rev. E 62 4365 | Fast algorithm for finding the eigenvalue distribution of very large matrices
[35] | Chelikowsky J R, Troullier N, and Saad Y 1994 Phys. Rev. Lett. 72 1240 | Finite-difference-pseudopotential method: Electronic structure calculations without a basis
[36] | Chelikowsky J R, Troullier N, Wu K, and Saad Y 1994 Phys. Rev. B 50 11355 | Higher-order finite-difference pseudopotential method: An application to diatomic molecules
[37] | Vosko S H, Wilk L, and Nusair M 1980 Can. J. Phys. 58 1200 | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
[38] | Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425 | Efficacious Form for Model Pseudopotentials
[39] | Jin F P, Willsch D, Willsch M, Lagemann H, Michielsen K, and De Raedt H 2021 J. Phys. Soc. Jpn. 90 012001 | Random State Technology
[40] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[41] | Pulay P 1982 J. Comput. Chem. 3 556 | ImprovedSCF convergence acceleration
[42] | Yuan S J, Rösner M, Schulz A, Wehling T O, and Katsnelson M I 2015 Phys. Rev. Lett. 114 047403 | Electronic Structures and Optical Properties of Partially and Fully Fluorinated Graphene
[43] | Yuan S J, De Raedt H, and Katsnelson M I 2010 Phys. Rev. B 82 235409 | Electronic transport in disordered bilayer and trilayer graphene
[44] | Yuan S J, Wehling T O, Lichtenstein A I, and Katsnelson M I 2012 Phys. Rev. Lett. 109 156601 | Enhanced Screening in Chemically Functionalized Graphene
[45] | Shi H, Zhan Z, Qi Z et al. 2020 Nat. Commun. 11 1 | Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene
[46] | Li Y H, Zhan Z, Kuang X H, Li Y G, and Yuan S J 2023 Comput. Phys. Commun. 285 108632 | TBPLaS: A tight-binding package for large-scale simulation
[47] | Shao X C, Xu Q, Wang S, Lv J, Wang Y C, and Ma Y M 2018 Comput. Phys. Commun. 233 78 | Large-scale ab initio simulations for periodic system
[48] | Ho G S, Lignères V L, and Carter E A 2008 Comput. Phys. Commun. 179 839 | Introducing PROFESS: A new program for orbital-free density functional theory calculations
[49] | Golub P and Manzhos S 2020 Comput. Phys. Commun. 256 107365 | CONUNDrum: A program for orbital-free density functional theory calculations
[50] | Arnon E, Rabani E, Neuhauser D, and Baer R 2017 J. Chem. Phys. 146 224111 | Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory