[1] | Forn-Díaz P, Lamata L, Rico E, Kono J, and Solano E 2019 Rev. Mod. Phys. 91 025005 | Ultrastrong coupling regimes of light-matter interaction
[2] | Kockum A F, Miranowicz A, De Liberato S, Savasta S, and Nori F 2019 Nat. Rev. Phys. 1 19 | Ultrastrong coupling between light and matter
[3] | Felicetti S and Boité A L 2020 Phys. Rev. Lett. 124 040404 | Universal Spectral Features of Ultrastrongly Coupled Systems
[4] | Garcia-Vidal F J, Ciuti C, and Ebbesen T W 2021 Science 373 eabd0336 | Manipulating matter by strong coupling to vacuum fields
[5] | Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 | Circuit quantum electrodynamics
[6] | Ashida Y, İmamoğlu A M C, and Demler E 2021 Phys. Rev. Lett. 126 153603 | Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths
[7] | Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, and Schoelkopf R J 2004 Nature 431 162 | Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
[8] | Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772 | Circuit quantum electrodynamics in the ultrastrong-coupling regime
[9] | Casanova J, Romero G, Lizuain I, García-Ripoll J J, and Solano E 2010 Phys. Rev. Lett. 105 263603 | Deep Strong Coupling Regime of the Jaynes-Cummings Model
[10] | Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2017 Nat. Phys. 13 44 | Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime
[11] | Yoshihara F, Fuse T, Ao Z, Ashhab S, Kakuyanagi K, Saito S, Aoki T, Koshino K, and Semba K 2018 Phys. Rev. Lett. 120 183601 | Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime
[12] | Mueller N S, Okamura Y, Vieira B, Juergensen S, Lange H, Barros E B, Schulz F, and Reich S 2020 Nature 583 780 | Deep strong light–matter coupling in plasmonic nanoparticle crystals
[13] | Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A, and D L 2017 Nat. Commun. 8 1715 | Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling
[14] | Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E, and Kim K 2018 Phys. Rev. X 8 021027 | Quantum Simulation of the Quantum Rabi Model in a Trapped Ion
[15] | Abah O, Puebla R, and Paternostro M 2020 Phys. Rev. Lett. 124 180401 | Quantum State Engineering by Shortcuts to Adiabaticity in Interacting Spin-Boson Systems
[16] | Devi A, Gunapala S D, Stockman M I, and Premaratne M 2020 Phys. Rev. A 102 013701 | Nonequilibrium cavity QED model accounting for dipole-dipole interaction in strong-, ultrastrong-, and deep-strong-coupling regimes
[17] | Wang S P, Zhang G Q, Wang Y, Chen Z, Li T, Tsai J S, Zhu S Y, and You J Q 2020 Phys. Rev. Appl. 13 054063 | Photon-Dressed Bloch-Siegert Shift in an Ultrastrongly Coupled Circuit Quantum Electrodynamical System
[18] | Hastrup J, Park K, Filip R, and Andersen U L 2021 Phys. Rev. Lett. 126 153602 | Unconditional Preparation of Squeezed Vacuum from Rabi Interactions
[19] | Bin Q, Wu Y, and Lü X Y 2021 Phys. Rev. Lett. 127 073602 | Parity-Symmetry-Protected Multiphoton Bundle Emission
[20] | Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, and Duan L M 2022 Phys. Rev. Lett. 128 160504 | Experimental Realization of the Rabi-Hubbard Model with Trapped Ions
[21] | Chu Y M, Zhang S L, Yu B Y, and Cai J M 2021 Phys. Rev. Lett. 126 010502 | Dynamic Framework for Criticality-Enhanced Quantum Sensing
[22] | Ilias T, Yang D, Huelga S F, and Plenio M B 2022 PRX Quantum 3 010354 | Criticality-Enhanced Quantum Sensing via Continuous Measurement
[23] | Romero G, Ballester D, Wang Y M, Scarani V, and Solano E 2012 Phys. Rev. Lett. 108 120501 | Ultrafast Quantum Gates in Circuit QED
[24] | Lamata L, Parra-Rodriguez A, Sanz M, and Solano E 2018 Adv. Phys.: X 3 1457981 | Digital-analog quantum simulations with superconducting circuits
[25] | Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, and Yao N Y 2021 Rev. Mod. Phys. 93 025001 | Programmable quantum simulations of spin systems with trapped ions
[26] | Head-Marsden K, Flick J, Ciccarino C J, and Narang P 2021 Chem. Rev. 121 3061 | Quantum Information and Algorithms for Correlated Quantum Matter
[27] | Hepp K and Lieb E H 1973 Ann. Phys. 76 360 | On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model
[28] | Wang Y K and Hioe F T 1973 Phys. Rev. A 7 831 | Phase Transition in the Dicke Model of Superradiance
[29] | Carmichael H, Gardiner C, and Walls D 1973 Phys. Lett. A 46 47 | Higher order corrections to the Dicke superradiant phase transition
[30] | Dicke R H 1954 Phys. Rev. 93 99 | Coherence in Spontaneous Radiation Processes
[31] | Garraway B M 2011 Philos. Trans. R. Soc. A 369 1137 | The Dicke model in quantum optics: Dicke model revisited
[32] | Rabi I I 1936 Phys. Rev. 49 324 | On the Process of Space Quantization
[33] | Rabi I I 1937 Phys. Rev. 51 652 | Space Quantization in a Gyrating Magnetic Field
[34] | Ashhab S and Nori F 2010 Phys. Rev. A 81 042311 | Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states
[35] | Hwang M J and Choi M S 2010 Phys. Rev. A 82 025802 | Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime
[36] | De Liberato S and Ciuti C 2013 Phys. Rev. Lett. 110 133603 | Quantum Phases of a Multimode Bosonic Field Coupled to Flat Electronic Bands
[37] | Hwang M J, Puebla R, and Plenio M B 2015 Phys. Rev. Lett. 115 180404 | Quantum Phase Transition and Universal Dynamics in the Rabi Model
[38] | Ying Z J, Liu M, Luo H G, Lin H Q, and You J Q 2015 Phys. Rev. A 92 053823 | Ground-state phase diagram of the quantum Rabi model
[39] | Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G, and Lin H Q 2017 Phys. Rev. Lett. 119 220601 | Universal Scaling and Critical Exponents of the Anisotropic Quantum Rabi Model
[40] | Wang Y M, You W L, Liu M X, Dong Y L, Luo H G, Romero G, and You J Q 2018 New J. Phys. 20 053061 | Quantum criticality and state engineering in the simulated anisotropic quantum Rabi model
[41] | Peng J, Rico E, Zhong J, Solano E, and Egusquiza I N L 2019 Phys. Rev. A 100 063820 | Unified superradiant phase transitions
[42] | Zhu H J, Xu K, Zhang G F, and Liu W M 2020 Phys. Rev. Lett. 125 050402 | Finite-Component Multicriticality at the Superradiant Quantum Phase Transition
[43] | Garbe L, Bina M, Keller A, Paris M G A, and Felicetti S 2020 Phys. Rev. Lett. 124 120504 | Critical Quantum Metrology with a Finite-Component Quantum Phase Transition
[44] | Jiang X D, Lu B, Han C Y, Fang R H, Zhao M H, Ma Z H, Guo T, and Lee C 2021 Phys. Rev. A 104 043307 | Universal dynamics of the superradiant phase transition in the anisotropic quantum Rabi model
[45] | Zhuang W F, Geng B, Luo H G, Guo G C, and Gong M 2021 Phys. Rev. A 104 053308 | Universality class and exact phase boundary in the superradiant phase transition
[46] | Stránský P, Cejnar P, and Filip R 2021 Phys. Rev. A 104 053722 | Stabilization of product states and excited-state quantum phase transitions in a coupled qubit-field system
[47] | Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, and Duan L M 2021 Nat. Commun. 12 1126 | Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion
[48] | Chen X, Wu Z, Jiang M, Lü X Y, Peng X, and Du J 2021 Nat. Commun. 12 6281 | Experimental quantum simulation of superradiant phase transition beyond no-go theorem via antisqueezing
[49] | Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press) |
[50] | Landau L D and Lifshitz E M 1980 Statistical Physics I & II 3rd edn (Amsterdam: Elsevier) |
[51] | Braak D 2011 Phys. Rev. Lett. 107 100401 | Integrability of the Rabi Model
[52] | Chen Q H, Wang C, He S, Liu T, and Wang K L 2012 Phys. Rev. A 86 023822 | Exact solvability of the quantum Rabi model using Bogoliubov operators
[53] | Xie Q T, Cui S, Cao J P, Amico L, and Fan H 2014 Phys. Rev. X 4 021046 | Anisotropic Rabi model
[54] | Wolf F A, Vallone F, Romero G, Kollar M, Solano E, and Braak D 2013 Phys. Rev. A 87 023835 | Dynamical correlation functions and the quantum Rabi model
[55] | Bohigas O, Giannoni M J, and Schmit C 1984 Phys. Rev. Lett. 52 1 | Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws
[56] | Mehta M L 2004 Random Matrices 3rd edn (Amsterdam: Elsevier) |
[57] | Rossatto D Z, Villas-Bôas C J, Sanz M, and Solano E 2017 Phys. Rev. A 96 013849 | Spectral classification of coupling regimes in the quantum Rabi model
[58] | Belobrov P I, Zaslavskiǐ G M, and Tartakovskiǐ G K 1976 Sov. Phys.-JETP 44 945 |
[59] | Milonni P W, Ackerhalt J R, and Galbraith H W 1983 Phys. Rev. Lett. 50 966 | Chaos in the Semiclassical -Atom Jaynes-Cummings Model: Failure of the Rotating-Wave Approximation
[60] | Graham R and Höhnerbach M 1984 Phys. Lett. A 101 61 | Quantum chaos of the two-level atom
[61] | Kuś M 1985 Phys. Rev. Lett. 54 1343 | Statistical Properties of the Spectrum of the Two-Level System
[62] | Bonci L, Roncaglia R, West B J, and Grigolini P 1991 Phys. Rev. Lett. 67 2593 | Quantum irreversibility and chaos
[63] | Fukuo T, Ogawa T, and Nakamura K 1998 Phys. Rev. A 58 3293 | Jaynes-Cummings model under continuous measurement: Weak chaos in a quantum system induced by unitarity collapse
[64] | Emary C and Brandes T 2003 Phys. Rev. Lett. 90 044101 | Quantum Chaos Triggered by Precursors of a Quantum Phase Transition: The Dicke Model
[65] | Naether U, García-Ripoll J J, Mazo J J, and Zueco D 2014 Phys. Rev. Lett. 112 074101 | Quantum Chaos in an Ultrastrongly Coupled Bosonic Junction
[66] | Born M and Oppenheimer R 1927 Ann. Phys. 389 457 | Zur Quantentheorie der Molekeln
[67] | The Supplemental Material provides the detailed comparison of the energies of the ground state and excited states with those obtained by numerically ED and the detailed fittings of the photons population in various cases. |
[68] | Yu L X, Zhu S Q, Liang Q F, Chen G, and Jia S T 2012 Phys. Rev. A 86 015803 | Analytical solutions for the Rabi model
[69] | Liu M, Ying Z J, An J H, and Luo H G 2015 New J. Phys. 17 043001 | Mean photon number dependent variational method to the Rabi model
[70] | Cong L, Sun X M, Liu M, Ying Z J, and Luo H G 2017 Phys. Rev. A 95 063803 | Frequency-renormalized multipolaron expansion for the quantum Rabi model
[71] | Mao B B, Li L, Wang Y, You W L, Wu W, Liu M, and Luo H G 2019 Phys. Rev. A 99 033834 | Variational generalized rotating-wave approximation in the two-qubit quantum Rabi model
[72] | Sun X M, Cong L, Eckle H P, Ying Z J, and Luo H G 2020 Phys. Rev. A 101 063832 | Application of the polaron picture in the two-qubit quantum Rabi model
[73] | Li Z M, Ferri D, and Batchelor M T 2021 Phys. Rev. A 103 013711 | Nonorthogonal-qubit-state expansion for the asymmetric quantum Rabi model
[74] | Irish E K 2007 Phys. Rev. Lett. 99 173601 | Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling
[75] | Chen X Y, Zhang Y Y, Fu L, and Zheng H 2020 Phys. Rev. A 101 033827 | Generalized coherent-squeezed-state expansion for the super-radiant phase transition
[76] | Li Z M and Batchelor M T 2021 Phys. Rev. A 104 033712 | Generalized adiabatic approximation to the quantum Rabi model
[77] | Braak D 2019 Symmetry 11 1259 | Symmetries in the Quantum Rabi Model
[78] | Le Boité A 2020 Adv. Quantum Technol. 3 1900140 | Theoretical Methods for Ultrastrong Light–Matter Interactions
[79] | Puebla R, Hwang M J, and Plenio M B 2016 Phys. Rev. A 94 023835 | Excited-state quantum phase transition in the Rabi model
[80] | Irish E K and Gea-Banacloche J 2014 Phys. Rev. B 89 085421 | Oscillator tunneling dynamics in the Rabi model
[81] | Aßmann M, Thewes J, Fröhlich D, and Bayer M 2016 Nat. Mater. 15 741 | Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons
[82] | Berry M V and Tabor M 1977 Proc. R. Soc. London A 356 375 | Level clustering in the regular spectrum