[1] | Lei N, Luo Z, Yau S T, and Gu D X 2018 arXiv:1805.10451 [cs.LG] | Geometric Understanding of Deep Learning
[2] | Lei N, Su K, Yau S T, and Gu D X 2019 Comput. Aided Geom. Des. 68 1 | A geometric view of optimal transportation and generative model
[3] | Fawzi A, Balog M, Huang A, Hubert T, Paredes B R, Barekatain M, Novikov A, Ruiz F J R, Schrittwieser J, Swirszcz G, Silver D, Hassabis D, and Kohli P 2022 Nature 610 47 | Discovering faster matrix multiplication algorithms with reinforcement learning
[4] | Gao X and Duan L M 2017 Nat. Commun. 8 662 | Efficient representation of quantum many-body states with deep neural networks
[5] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[6] | Wu D, Wang L, and Zhang P 2019 Phys. Rev. Lett. 122 080602 | Solving Statistical Mechanics Using Variational Autoregressive Networks
[7] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 | Machine learning and the physical sciences
[8] | Bedolla E, Padierna L C, and Priego R C 2021 J. Phys.: Condens. Matter 33 053001 | Machine learning for condensed matter physics
[9] | Font B, Weymouth G, Nguyen V T, and Tutty O R 2021 J. Comput. Phys. 434 110199 | Deep learning of the spanwise-averaged Navier–Stokes equations
[10] | Di Sante D, Medvidovic M, Toschi A, Sangiovanni G, Franchini C, Sengupta A M, and Millis A J 2022 Phys. Rev. Lett. 129 136402 | Deep Learning the Functional Renormalization Group
[11] | Helmstaedter M, Briggman K L, Turaga S C, Jain V, Seung H S, and DenkHelmstaedter W 2013 Nature 500 168 | Connectomic reconstruction of the inner plexiform layer in the mouse retina
[12] | Webb S 2018 Nature 554 555 | Deep learning for biology
[13] | Dauparas J, Anishchenko I, Bennett N, Ragotte H B R J, Milles L F, Wicky B I M, Courbet A, deHaas R J, Bethel N, Leung P J Y, Huddy T F, Pellock S, Tischer D, Chan F, Koepnick B, Nguyen H, Kang A, Sankaran B, Bera A K, King N P, and Baker D 2022 Science 378 49 | Robust deep learning–based protein sequence design using ProteinMPNN
[14] | Stanev V, Oses C, Kusne A G, Rodriguez E, Paglione J, Curtarolo S, and Takeuchi I 2018 npj Comput. Mater. 4 29 | Machine learning modeling of superconducting critical temperature
[15] | Wang A Y T, Murdock R J, Kauwe S K, Oliynyk A O, Gurlo A, Brgoch J, Persson K A, and Sparks T D 2020 Chem. Mater. 32 4954 | Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices
[16] | Batra R, Song L, and Ramprasad R 2021 Nat. Rev. Mater. 6 655 | Emerging materials intelligence ecosystems propelled by machine learning
[17] | LeCun Y, Bengio Y, and Hinton G 2015 Nature 521 436 | Deep learning
[18] | Goodfellow I, Bengio Y, and Courville A 2016 Deep Learning (Cambridge: MIT Press) |
[19] | Smolensky P 1986 Information Processing in Dynamical Systems: Foundations of Harmony Theory (Cambridge: MIT Press) |
[20] | Bourlard H and Kamp Y 1988 Biol. Cybern. 59 291 | Auto-association by multilayer perceptrons and singular value decomposition
[21] | Lecun Y, Bottou L, Bengio Y, and Haffner P 1998 Proc. IEEE 86 2278 | Gradient-based learning applied to document recognition
[22] | Bengio Y and Bengio S 2000 Advances in Neural Information Processing Systems 12 400 |
[23] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[24] | Cai Z and Liu J 2018 Phys. Rev. B 97 035116 | Approximating quantum many-body wave functions using artificial neural networks
[25] | Liang X, Liu W Y, Lin P Z, Guo G C, Zhang Y S, He L X 2018 Phys. Rev. B 98 104426 | Solving frustrated quantum many-particle models with convolutional neural networks
[26] | Nomura Y and Imada M 2021 Phys. Rev. X 11 031034 | Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
[27] | Pfau D, Spencer J S, Matthews A G D G, and Foulkes W M C 2020 Phys. Rev. Res. 2 033429 | Ab initio solution of the many-electron Schrödinger equation with deep neural networks
[28] | Hermann J, Schatzle Z, and Noe F 2020 Nat. Chem. 12 891 | Deep-neural-network solution of the electronic Schrödinger equation
[29] | Zeng S M, Zhao Y C, Li G, Wang R R, Wang X M, and Ni J 2019 npj Comput. Mater. 5 84 | Atom table convolutional neural networks for an accurate prediction of compounds properties
[30] | Konno T, Kurokawa H, Nabeshima F, Sakishita Y, Ogawa R, Hosako I, and Maeda A 2021 Phys. Rev. B 103 014509 | Deep learning model for finding new superconductors
[31] | van Nieuwenburg E P L, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435 | Learning phase transitions by confusion
[32] | Wetzel S J 2017 Phys. Rev. E 96 022140 | Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders
[33] | Valiant L G 1984 Commun. ACM 27 1134 | A theory of the learnable
[34] | Bahri Y, Kadmon J, Pennington J, Schoenholz S S, Dickstein J S, and Ganguli S 2020 Annu. Rev. Condens. Matter Phys. 11 501 | Statistical Mechanics of Deep Learning
[35] | Hibat-Allah M, Inack E M, Wiersema R, Melko R G, and Carrasquilla J 2021 Nat. Mach. Intell. 3 952 | Variational neural annealing
[36] | Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, and Yang L 2021 Nat. Rev. Phys. 3 422 | Physics-informed machine learning
[37] | Stoudenmire E and Schwab D J 2016 arXiv:1605.05775 [stat.ML] | Supervised Learning with Quantum-Inspired Tensor Networks
[38] | Glasser I, Pancotti N, and Cirac J I 2020 IEEE Access 8 68169 | From Probabilistic Graphical Models to Generalized Tensor Networks for Supervised Learning
[39] | Cheng S, Wang L, and Zhang P 2021 Phys. Rev. B 103 125117 | Supervised learning with projected entangled pair states
[40] | Han Z Y, Wang J, Fan H, Wang L, and Zhang P 2018 Phys. Rev. X 8 031012 | Unsupervised Generative Modeling Using Matrix Product States
[41] | Cheng S, Wang L, Xiang T, and Zhang P 2019 Phys. Rev. B 99 155131 | Tree tensor networks for generative modeling
[42] | Vieijra T, Vanderstraeten L, and Verstraete F 2022 arXiv:2202.08177 [quant-ph] | Generative modeling with projected entangled-pair states
[43] | Liu D, Ran S J, Wittek P, Peng C, Garcia R B, Su G, and Lewenstein M 2019 New J. Phys. 21 073059 | Machine learning by unitary tensor network of hierarchical tree structure
[44] | Gao Z F, Cheng S, He R Q, Xie Z Y, Zhao H H, Lu Z Y, and Xiang T 2020 Phys. Rev. Res. 2 023300 | Compressing deep neural networks by matrix product operators
[45] | Žunkovič B 2022 Quantum Mach. Intell. 4 21 | Deep tensor networks with matrix product operators
[46] | Saremi S and Sejnowski T J 2013 Proc. Natl. Acad. Sci. USA 110 3071 | Hierarchical model of natural images and the origin of scale invariance
[47] | Beny C 2013 arXiv:1301.3124 [quant-ph] | Deep learning and the renormalization group
[48] | Lin H W, Tegmark M, and Rolnick D 2017 J. Stat. Phys. 168 1223 | Why Does Deep and Cheap Learning Work So Well?
[49] | Mehta P and Schwab D J 2014 arXiv:1410.3831 [stat.ML] Schwab D J and Mehta P 2016 arXiv:1609.03541 [cond-mat.dis-nn] | An exact mapping between the Variational Renormalization Group and Deep Learning
[50] | Koch-Janusz M and Ringel Z 2018 Nat. Phys. 14 578 | Mutual information, neural networks and the renormalization group
[51] | Li S H and Wang L 2018 Phys. Rev. Lett. 121 260601 | Neural Network Renormalization Group
[52] | De Koch L M, De Koch R M, and Cheng L 2020 IEEE Access 8 106487 | Is Deep Learning a Renormalization Group Flow?
[53] | Cardy J 1996 Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge University Press) |
| Kardar M 2007 Statistical Physics of Fields (Cambridge: Cambridge University Press) |
[54] | Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601 | Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models
[55] | Xie Z Y, Jiang H C, Chen Q N, Weng Z Y, and Xiang T 2009 Phys. Rev. Lett. 103 160601 | Second Renormalization of Tensor-Network States
| Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W, and Xiang T 2010 Phys. Rev. B 81 174411 | Renormalization of tensor-network states
[56] | Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P, and Xiang T 2012 Phys. Rev. B 86 045139 | Coarse-graining renormalization by higher-order singular value decomposition
[57] | Efrati E, Wang Z, Kolan A, Kadanoff L P 2014 Rev. Mod. Phys. 86 647 | Real-space renormalization in statistical mechanics
[58] | Meurice Y, Sakai R, and Yockey J U 2022 Rev. Mod. Phys. 94 025005 | Tensor lattice field theory for renormalization and quantum computing
[59] | Chen B B, Gao Y, Guo Y B, Liu Y Z, Zhao H H, Liao H J, Wang L, Xiang T, Li W, and Xie Z Y 2020 Phys. Rev. B 101 220409(R) | Automatic differentiation for second renormalization of tensor networks
[60] | Hinton G, Vinyals O, and Dean J 2015 arXiv:1503.02531 [stat.ML] | Distilling the Knowledge in a Neural Network
[61] | Wang T, Zhu J Y, Torralba A, and Efros A A 2020 arXiv:1811.10959v3 [cs.LG] | Dataset Distillation
[62] | Zhao B, Mopuri K R, and Bilen H 2021 arXiv:2006.05929 [cs.CV] | Dataset Condensation with Gradient Matching
[63] | Zhao B and Bilen H 2022 arXiv:2110.04181v3 [cs.LG] | Dataset Condensation with Distribution Matching
[64] | The official website of MNIST is available at http://yann.lecun.com/exdb/mnist |
[65] | The official website of CIFAR-10 is available at https://www.cs.toronto.edu/ kriz/cifar.html |
[66] | Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 | Quantum Electrodynamics at Small Distances
[67] | Kadanoff L P 1966 Phys. Phys. Fiz. 2 263 | Scaling laws for ising models near
[68] | Wilson K G 1971 Phys. Rev. B 4 3174 | Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture
| Wilson K G 1971 Phys. Rev. B 4 3184 | Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior
[69] | Wilson K G 1975 Rev. Mod. Phys. 47 773 | The renormalization group: Critical phenomena and the Kondo problem
[70] | Kadanoff L P 1975 Phys. Rev. Lett. 34 1005 | Variational Principles and Approximate Renormalization Group Calculations
[71] | Swendsen R H 1979 Phys. Rev. Lett. 42 859 | Monte Carlo Renormalization Group
[72] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[73] | Wetterich C 1993 Phys. Lett. B 301 90 | Exact evolution equation for the effective potential
[74] | Verstraete F, García-Ripoll J J, and Cirac J I 2004 Phys. Rev. Lett. 93 207204 | Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems
[75] | Pirvu B, Murg V, Cirac J I, and Verstraete F 2010 New J. Phys. 12 025012 | Matrix product operator representations
[76] | Bray J W and Chui S T 1979 Phys. Rev. B 19 4876 | Computer renormalization-group calculations of and correlation functions of the one-dimensional Hubbard model
[77] | Pan C Y and Chen X Y 1987 Phys. Rev. B 36 8600 | Renormalization-group study of high-spin Heisenberg antiferromagnets
[78] | Kovarik M D 1990 Phys. Rev. B 41 6889 | Numerical solution of large s =1/2 and s =1 Heisenberg antiferromagnetic spin chains using a truncated basis expansion
[79] | Yang L P, Liu Y Z, Zou H Y, Xie Z Y, and Meurice Y 2016 Phys. Rev. E 93 012138 | Fine structure of the entanglement entropy in the O(2) model
[80] | Chen B B, Chen L, Chen Z, Li W, and Weichselbaum A 2018 Phys. Rev. X 8 031082 | Exponential Thermal Tensor Network Approach for Quantum Lattice Models
[81] | Hornik K, Stinchcombe M, and White H 1989 Neural Networks 2 359 | Multilayer feedforward networks are universal approximators
[82] | Cybenko G 1989 Math. Control Signals Syst. 2 303 | Approximation by superpositions of a sigmoidal function
[83] | He K M, Zhang X Y, Ren S Q, and Sun J 2016 Proc. IEEE Conference Computer Vision Pattern Recognition (Las Vegas, USA, 26 June–1 July 2016) pp 770–778 |
[84] | Huang G, Liu Z, van der Maaten L, and Weinberge K Q 2017 Proc. IEEE Conference Computer Vision Pattern Recognition (Hawaii USA, 21–26 July 2017) pp 4700–4708 |
[85] | Vaswani A, Shazeer N, Parmer N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, and Polosukhin I 2017 arXiv:1706.03762 [cs.CL] | Attention Is All You Need
[86] | Press W H, Teukolsky S A, Vetterling W T, and Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (Cambridge: Cambridge University Press) |
[87] | Tolstikhin I, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J, Steiner A, Keysers D, Uszkoreit J, Lucic M, and Dosovitskiy A 2021 arXiv:2105.01601 [cs.CV] | MLP-Mixer: An all-MLP Architecture for Vision
[88] | Luo W, Li Y, Urtasun R, and Zemel R 2016 Advances in Neural Information Processing Systems (Barcelona, Spain, 5–8 December 2016) |
[89] | Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, and Cottrell G 2018 IEEE Winter Conference on Applications of Computer Vision (Nevada, USA, 12–15 March 2018) pp 1451–1460 |
[90] | Deng J, Guo J, Xue N, and Zafeiriou S 2019 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Long Beach, USA, 16–20 June 2019) pp 4690–4699 |
[91] | Chen X, Ma Q, and Alkharobi T 2009 IEEE International Conference on Computer Science and Information Technology (Beijing, China 8–11 August 2009) pp 291–294 | New neural networks based on Taylor series and their research
[92] | Montavon G, Lapuschkin S, Binder A, Samek W, and Muller K R 2017 Pattern Recognit. 65 211 | Explaining nonlinear classification decisions with deep Taylor decomposition
[93] | Tong Y J, Xiong S Y, He X Z, Pan G H, and Zhu B 2021 J. Comput. Phys. 437 110325 | Symplectic neural networks in Taylor series form for Hamiltonian systems
[94] | Rao C, Sun H, and Liu Y 2021 arXiv:2106.04781 [cs.LG] | Embedding Physics to Learn Spatiotemporal Dynamics from Sparse Data
[95] | Rendle S 2010 IEEE International Conference on Data Mining (Sydney, Australia, 13–17 December 2010) pp 995–1000 |
[96] | Meng Y M, Zhang J, Zhang P, Gao C, and Ran S J 2021 arXiv:2012.11841v2 [cs.LG] | Residual Matrix Product State for Machine Learning
[97] | Novikov A, Trofimov M, and Oseledets I 2017 arXiv: 1605.03795v3 [stat.ML] | Exponential Machines