[1] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[2] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[3] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[4] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[5] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[6] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[7] | Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, and Payne M C 2005 Z. Kristallogr. 220 567 | First principles methods using CASTEP
[8] | Gonze X, Amadon B, Antonius G, Arnardi F, Baguet L, Beuken J M, Bieder J, Bottin F, Bouchet J, Bousquet E, Brouwer N, Bruneval F, Brunin G, Cavignac T, Charraud J B, Chen W, Côté M, Cottenier S, Denier J, Geneste G, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, He X, Helbig N, Holzwarth N, Jia Y, Jollet F, Lafargue-Dit-Hauret W, Lejaeghere K, Marques M A L, Martin A, Martins C, Miranda H P C, Naccarato F, Persson K, Petretto G, Planes V, Pouillon Y, Prokhorenko S, Ricci F, Rignanese G M, Romero A H, Schmitt M M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Zérah G, and Zwanziger J W 2020 Comput. Phys. Commun. 248 107042 | The Abinitproject: Impact, environment and recent developments
[9] | Romero A H, Allan D C, Amadon B, Antonius G, Applencourt T, Baguet L, Bieder J, Bottin F C, Bouchet J, Bousquet E, Bruneval F, Brunin G, Caliste D, Côté M, Denier J, Dreyer C, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, Jollet F C, Jomard G, Martin A, Miranda H P C, Naccarato F, Petretto G, Pike N A, Planes V, Prokhorenko S, Rangel T, Ricci F, Rignanese G M, Royo M, Stengel M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Wiktor J, Zwanziger J W, and Gonze X 2020 J. Chem. Phys. 152 124102 | ABINIT: Overview and focus on selected capabilities
[10] | Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 | The SIESTA method for ab initio order- N materials simulation
[11] | García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W Z, and Junquera J 2020 J. Chem. Phys. 152 204108 | S iesta : Recent developments and applications
[12] | Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101 | WIEN2k: An APW+lo program for calculating the properties of solids
[13] | Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye M Y, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz J J, Köhler C, Kowalczyk T, Kubař T, Lee I S, Lutsker V, Maurer R J, Min S K, Mitchell I, Negre C, Niehaus T A, Niklasson A M N, Page A J, Pecchia A, Penazzi G, Persson M P, Řezáč J, Sánchez C G, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu V W Z, and Frauenheim T 2020 J. Chem. Phys. 152 124101 | DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
[14] | Luque A, Panchak A, Mellor A, Vlasov A, Martí A, and Andreev V 2015 Physica B 456 82 | Empiric k·p Hamiltonian calculation of the band-to-band photon absorption in semiconductors
[15] | Gresch D, Wu Q, Winkler G W, and Soluyanov A A 2017 New J. Phys. 19 035001 | Hidden Weyl points in centrosymmetric paramagnetic metals
[16] | Luttinger J M and Kohn W 1955 Phys. Rev. 97 869 | Motion of Electrons and Holes in Perturbed Periodic Fields
[17] | Marquardt O, Geelhaar L, and Brandt O 2015 Nano Lett. 15 4289 | Impact of Random Dopant Fluctuations on the Electronic Properties of In x Ga 1– x N/GaN Axial Nanowire Heterostructures
[18] | Kane E O 1957 J. Phys. Chem. Solids 1 249 | Band structure of indium antimonide
[19] | Zhang H J and Zhang S C 2013 Phys. Status Solidi RRL 7 72 | Topological insulators from the perspective of first‐principles calculations
[20] | Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 | Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
[21] | Fu L 2009 Phys. Rev. Lett. 103 266801 | Hexagonal Warping Effects in the Surface States of the Topological Insulator
[22] | Xu G, Weng H M, Wang Z J, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806 | Chern Semimetal and the Quantized Anomalous Hall Effect in
[23] | Faria J P E, Xu G F, Lee J, Gerhardt N C, Sipahi G M, and Žutić I 2015 Phys. Rev. B 92 075311 | Toward high-frequency operation of spin lasers
[24] | Holub M and Jonker B T 2011 Phys. Rev. B 83 125309 | Threshold current reduction in spin-polarized lasers: Role of strain and valence-band mixing
[25] | Marquardt O 2021 Comput. Mater. Sci. 194 110318 | Simulating the electronic properties of semiconductor nanostructures using multiband models
[26] | Faria J P E, Kurpas M, Gmitra M, and Fabian J 2019 Phys. Rev. B 100 115203 | theory for phosphorene: Effective -factors, Landau levels, and excitons
[27] | Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D, and Fal'ko V 2015 2D Mater. 2 049501 | Corrigendum: k.p theory for two-dimensional transition metal dichalcogenide semiconductors (2015 2D Mater. 2 022001)
[28] | Deilmann T, Krüger P, and Rohlfing M 2020 Phys. Rev. Lett. 124 226402 | Ab Initio Studies of Exciton Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields
[29] | Faria J P and Sipahi G 2012 J. Appl. Phys. 112 103716 | Band structure calculations of InP wurtzite/zinc-blende quantum wells
[30] | Xuan F Y and Quek S Y 2020 Phys. Rev. Res. 2 033256 | Valley Zeeman effect and Landau levels in two-dimensional transition metal dichalcogenides
[31] | Climente J I, Segarra C, Rajadell F, and Planelles J 2016 J. Appl. Phys. 119 125705 | Electrons, holes, and excitons in GaAs polytype quantum dots
[32] | Lucignano P, Giuliano D, and Tagliacozzo A 2007 Phys. Rev. B 76 045324 | Quantum rings with Rashba spin-orbit coupling: A path-integral approach
[33] | Zamani A, Setareh F, Azargoshasb T, and Niknam E 2017 Superlattices Microstruct. 110 243 | Electronic structure and Landé g-factor of a quantum ring in the presence of spin-orbit coupling: Temperature and Zeeman effect
[34] | León-González J C, Toscano-Negrette R G, Morales A L, Vinasco J A, Yücel M B, Sari H, Kasapoglu E, Sakiroglu S, Mora-Ramos M E, Restrepo R L, and Duque C A 2023 Nanomaterials 13 1461 | Spin–Orbit and Zeeman Effects on the Electronic Properties of Single Quantum Rings: Applied Magnetic Field and Topological Defects
[35] | Zamani A and Rezaei G 2018 Superlattices Microstruct. 124 145 | Hole energy levels and effective g-factor of quantum rings utilizing k.p Hamiltonian in terms of cylindrical polar coordinates
[36] | Pryor C E and Flatté M E 2006 Phys. Rev. Lett. 96 026804 | Landé Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots
[37] | Gharaati A 2017 Solid State Commun. 258 17 | Lande g-factor in semiconductor cylinder quantum dots under magnetic fields and spin-orbit interaction
[38] | Kotlyar R, Reinecke T L, Bayer M, and Forchel A 2001 Phys. Rev. B 63 085310 | Zeeman spin splittings in semiconductor nanostructures
[39] | Kiselev A A, Ivchenko E L, and Rössler U 1998 Phys. Rev. B 58 16353 | Electron g factor in one- and zero-dimensional semiconductor nanostructures
[40] | Winkler G W, Varjas D, Skolasinski R, Soluyanov A A, Troyer M, and Wimmer M 2017 Phys. Rev. Lett. 119 037701 | Orbital Contributions to the Electron Factor in Semiconductor Nanowires
[41] | Toloza S M A, Ferreira D S A, de Andrada E S E A, and La R G C 2012 Phys. Rev. B 86 195302 | Mesoscopic spin-orbit effect in the semiconductor nanostructure electron factor
[42] | Alegre T P M, Hernández F G G, Pereira A L C, and Medeiros-Ribeiro G 2006 Phys. Rev. Lett. 97 236402 | Landé Tensor in Semiconductor Nanostructures
[43] | Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C, and Yu D P 2015 Nanoscale 7 16687 | Zeeman effect on surface electron transport in topological insulator Bi2 Se3 nanoribbons
[44] | Liu Z H, Entin-Wohlman O, Aharony A, You J Q, and Xu H Q 2021 Phys. Rev. B 104 085302 | Topological states and interplay between spin-orbit and Zeeman interactions in a spinful Su-Schrieffer-Heeger nanowire
[45] | Xin J and Reid S A 2002 J. Chem. Phys. 116 525 | Zeeman quantum-beat spectroscopy of NO2: Eigenstate-resolved Landé gF factors near dissociation threshold
[46] | Semenov M, Yurchenko S N, and Tennyson J 2016 J. Mol. Spectrosc. 330 57 | Predicted Landé g-factors for open shell diatomic molecules
[47] | Fischer C F and Jönsson P 2001 J. Mol. Struct.: THEOCHEM 537 55 | Landé g factors for 2p4 (3P)3p and 2p4(3P)3d states of Ne II
[48] | Gao J C, Wu Q S, Persson C, and Wang Z J 2021 Comput. Phys. Commun. 261 107760 | Irvsp: To obtain irreducible representations of electronic states in the VASP
[49] | Jiang Y, Fang Z, and Fang C 2021 Chin. Phys. Lett. 38 077104 | A k · p Effective Hamiltonian Generator
[50] | Song Z, Sun S, Xu Y, Nie S, Weng H, Fang Z, and Dai X 2021 First Principle Calculation of the Effective Zeeman's Couplings in Topological Materials (Singerpore: World Scientific) p 263 | Memorial Volume for Shoucheng Zhang
[51] | Zhang R, Deng J, Sun Y, Fang Z, Guo Z, and Wang Z 2023 Phys. Rev. Res. 5 023142 The IR2PW code is available at https://github.com/zjwang11/IR2PW | Large shift current, Zak phase, and the unconventional nature of Se and Te
[52] | Iraola M, Mañes J L, Bradlyn B, Horton M K, Neupert T, Vergniory M G, and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226 | IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures
[53] | Cassiano J A V V, Araújo A L, Junior P E F, and Ferreira G J 2023 arXiv:2306.08554 [cond-mat.mes-hall] | DFT2kp: effective kp models from ab-initio data
[54] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[55] | Blöchl P E, Först C J, and Schimpl J 2003 Bull. Mater. Sci. 26 33 | Projector augmented wave method:ab initio molecular dynamics with full wave functions
[56] | Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206 | Exponential protection of zero modes in Majorana islands
[57] | Zhang S, S H, Song Z D, Liang C, and Wang Z 2023 VASP2KP |
[58] | Köhler H and Wöchner E 1975 Phys. Status Solidi B 67 665 | The g ‐factor of the conduction electrons in Bi2 Se3
[59] | Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, and Samuelson L 2005 Phys. Rev. B 72 201307 | Tunable effective factor in InAs nanowire quantum dots
[60] | Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S, and Högele A 2020 Nat. Commun. 11 4539 | Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory