[1] | Anderson P 1973 Mater. Res. Bull. 8 153 | Resonating valence bonds: A new kind of insulator?
[2] | Anderson P W 1987 Science 235 1196 | The Resonating Valence Bond State in La2CuO4 and Superconductivity
[3] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[4] | Kitaev A 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[5] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[6] | Choi S K et al. 2012 Phys. Rev. Lett. 108 127204 | Spin Waves and Revised Crystal Structure of Honeycomb Iridate
[7] | Singh Y et al. 2012 Phys. Rev. Lett. 108 127203 | Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates
[8] | Plumb K W et al. 2014 Phys. Rev. B 90 041112 | : A spin-orbit assisted Mott insulator on a honeycomb lattice
[9] | Sears J A et al. 2015 Phys. Rev. B 91 144420 | Magnetic order in : A honeycomb-lattice quantum magnet with strong spin-orbit coupling
[10] | Baek S H et al. 2017 Phys. Rev. Lett. 119 037201 | Evidence for a Field-Induced Quantum Spin Liquid in -
[11] | Wolter A U B et al. 2017 Phys. Rev. B 96 041405 | Field-induced quantum criticality in the Kitaev system
[12] | Sears J A et al. 2017 Phys. Rev. B 95 180411 | Phase diagram of in an in-plane magnetic field
[13] | Gass S et al. 2020 Phys. Rev. B 101 245158 | Field-induced transitions in the Kitaev material probed by thermal expansion and magnetostriction
[14] | Bachus S et al. 2020 Phys. Rev. Lett. 125 097203 | Thermodynamic Perspective on Field-Induced Behavior of
[15] | Agrestini S et al. 2017 Phys. Rev. B 96 161107 | Electronically highly cubic conditions for Ru in
[16] | Chaloupka J et al. 2010 Phys. Rev. Lett. 105 027204 | Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides
[17] | Chaloupka J et al. 2013 Phys. Rev. Lett. 110 097204 | Zigzag Magnetic Order in the Iridium Oxide
[18] | Schaffer R et al. 2012 Bhattacharjee S & Kim Y B Phys. Rev. B 86 224417 | Quantum phase transition in Heisenberg-Kitaev model
[19] | Reuther J et al. 2011 Phys. Rev. B 84 100406 | Finite-temperature phase diagram of the Heisenberg-Kitaev model
[20] | Sela E et al. 2014 Phys. Rev. B 90 035113 | Order-by-disorder and spin-orbital liquids in a distorted Heisenberg-Kitaev model
[21] | Liu X et al. 2011 Phys. Rev. B 83 220403 | Long-range magnetic ordering in Na IrO
[22] | Ye F et al. 2012 Phys. Rev. B 85 180403 | Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na IrO
[23] | Ran K J, Wang J H, Bao S et al. 2022 Chin. Phys. Lett. 39 027501 | Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
[24] | Ji J T, Sun M J, Cai Y Z et al. 2021 Chin. Phys. Lett. 38 047502 | Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates
[25] | Wang L, Zhang Y L, and Sandvik A W 2022 Chin. Phys. Lett. 39 077502 | Quantum Spin Liquid Phase in the Shastry-Sutherland Model Detected by an Improved Level Spectroscopic Method
[26] | Zhao X X, Ran K J, Wang J H et al. 2022 Chin. Phys. Lett. 39 057501 | Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$
[27] | Zheng J C et al. 2017 Phys. Rev. Lett. 119 227208 | Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of
[28] | Hassan S R et al. 2013 Phys. Rev. Lett. 110 037201 | Stable Algebraic Spin Liquid in a Hubbard Model
[29] | Liang L, Wang Z, and Yu Y 2014 Phys. Rev. B 90 075119 | Distinct-symmetry spin-liquid states and phase diagram of the Kitaev-Hubbard model
[30] | Faye J P L, Sénéchal D, and Hassan S R 2014 Phys. Rev. B 89 115130 | Topological phases of the Kitaev-Hubbard model at half filling
[31] | Banerjee A et al. 2016 Nat. Mater. 15 733 | Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
[32] | Mohapatra S and Singh A 2019 J. Magn. Magn. Mater. 479 229 | Spin waves and stability of zigzag order in the Hubbard model with spin-dependent hopping terms: Application to the honeycomb lattice compounds and
[33] | Rau J G, Lee E K H, and Kee H Y 2014 Phys. Rev. Lett. 112 077204 | Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
[34] | Lubasch M, Cirac J I, and Bañuls M C 2014 New J. Phys. 16 033014 | Unifying projected entangled pair state contractions
[35] | Orús R 2014 Ann. Phys. 349 117 | A practical introduction to tensor networks: Matrix product states and projected entangled pair states
[36] | Verstraete F, Murg V, and Cirac J 2008 Adv. Phys. 57 143 | Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems
[37] | Jiang H C, Weng Z Y, and Xiang T 2008 Phys. Rev. Lett. 101 090603 | Accurate Determination of Tensor Network State of Quantum Lattice Models in Two Dimensions
[38] | Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 [cond-mat.str-el] | Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions
[39] | Liu W Y, Dong S J, Han Y J, Guo G C, and He L 2017 Phys. Rev. B 95 195154 | Gradient optimization of finite projected entangled pair states
[40] | Dong S J, Wang C, Han Y, Guo G C, and He L 2019 Phys. Rev. B 99 195153 | Gradient optimization of fermionic projected entangled pair states on directed lattices
[41] | Gu Z C, Verstraete F, and Wen X G 2010 arXiv:1004.2563 [cond-mat.str-el] | Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states
[42] | Corboz P and Orús R, Bauer B, and Vidal G 2010 Phys. Rev. B 81 165104 | Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states
[43] | Kraus C V and Schuch N, Verstraete F, and Cirac J I 2010 Phys. Rev. A 81 052338 | Fermionic projected entangled pair states
[44] | Barthel T, Pineda C, and Eisert J 2009 Phys. Rev. A 80 042333 | Contraction of fermionic operator circuits and the simulation of strongly correlated fermions
[45] | Laubach M et al. 2017 Phys. Rev. B 96 121110 | Three-band Hubbard model for : Topological insulator, zigzag antiferromagnet, and Kitaev-Heisenberg material
[46] | Liu W Y et al. 2018 Phys. Rev. B 98 241109 | Gapless spin liquid ground state of the spin- Heisenberg model on square lattices
[47] | Okamoto S 2013 Phys. Rev. B 87 064508 | Global phase diagram of a doped Kitaev-Heisenberg model
[48] | Steinigeweg R and Brenig W 2016 Phys. Rev. B 93 214425 | Energy dynamics in the Heisenberg-Kitaev spin chain
[49] | Janssen L, Andrade E C, and Vojta M 2016 Phys. Rev. Lett. 117 277202 | Honeycomb-Lattice Heisenberg-Kitaev Model in a Magnetic Field: Spin Canting, Metamagnetism, and Vortex Crystals
[50] | Gohlke M and Verresen R, Moessner R, and Pollmann F 2017 Phys. Rev. Lett. 119 157203 | Dynamics of the Kitaev-Heisenberg Model
[51] | Joshi D G 2018 Phys. Rev. B 98 060405 | Topological excitations in the ferromagnetic Kitaev-Heisenberg model
[52] | Metavitsiadis A, Psaroudaki C, and Brenig W 2019 Phys. Rev. B 99 205129 | Spin liquid fingerprints in the thermal transport of a Kitaev-Heisenberg ladder
[53] | Cônsoli P M and Janssen L, Vojta M, and Andrade E C 2020 Phys. Rev. B 102 155134 | Heisenberg-Kitaev model in a magnetic field: expansion
[54] | Morita K and Tohyama T 2020 Phys. Rev. Res. 2 013205 | Finite-temperature properties of the Kitaev-Heisenberg models on kagome and triangular lattices studied by improved finite-temperature Lanczos methods
[55] | Zhang S S and Halász G B, Zhu W, and Batista C D 2021 Phys. Rev. B 104 014411 | Variational study of the Kitaev-Heisenberg-Gamma model
[56] | Stoudenmire E and White S R 2012 Annu. Rev. Condens. Matter Phys. 3 111 | Studying Two-Dimensional Systems with the Density Matrix Renormalization Group