[1] | Huang H L, Xia H, Guo Z B, Chen Y, and Li H J 2017 Chin. Phys. B 26 025207 | Microwave absorption properties of Ag naowires/carbon black composites
[2] | Wang Y, He D W, and Wang Y S 2021 Chin. Phys. B 30 067804 | Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide*
[3] | Liu Y, Li R, Jia Y, and He Z X 2020 Chin. Phys. B 29 067701 | Effect of deposition temperature on SrFe12 O19 @carbonyl iron core–shell composites as high-performance microwave absorbers
[4] | Dai M W, Zhai Y H, Wu L, and Zhang Y 2019 Carbon 152 661 | Magnetic aligned Fe3O4-reduced graphene oxide/waterborne polyurethane composites with controllable structure for high microwave absorption capacity
[5] | Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N, Yu R, and Stucky G 2022 Carbon 193 26 | Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption
[6] | Iqbal A, Shahzad F, Hantanasirisakul K, Kim M, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, and Koo C 2020 Science 369 446 | Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3 CNT x (MXene)
[7] | Ling A, Tan G G, Man Q K, Lou Y X, Chen S W, Gu X S, Li R W, Pan J, and Liu X C 2019 Compos. Part B 171 214 | Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect
[8] | Yan F, Guo D, Zhang S, Li C Y, Zhu C L, Zhang X T, and Chen Y J 2018 Nanoscale 10 2697 | An ultra-small NiFe2 O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property
[9] | Wang W J, Zang C G, and Jiao Q J 2013 Chin. Phys. B 22 128101 | Fabrication and performance optimization of Mn—Zn ferrite/EP composites as microwave absorbing materials
[10] | Liu P B, Huang Y, Yan J, Yang Y W, and Zhao Y 2016 ACS Appl. Mater. & Interfaces 8 5536 | Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties
[11] | Li G, Xie T S, Yang S L, Jin J H, and Jiang J M 2012 J. Phys. Chem. C 116 9196 | Microwave Absorption Enhancement of Porous Carbon Fibers Compared with Carbon Nanofibers
[12] | Gang Q, Niaz M A, and Boudaghi R 2021 J. Magn. Magn. Mater. 537 168181 | Development of high-efficient double layer microwave absorber based on Fe3O4/carbon fiber and Fe3O4/rGO
[13] | Dong J, Zhou W C, Qing Y C, Gao L, Duan S C, Luo F, and Zhou D M 2018 Ceram. Int. 44 14007 | Dielectric and microwave absorption properties of CB doped SiO2f/PI double-layer composites
[14] | Li Y G, Wu X, Chen J B, Cao A X, Boudaghi R, and Niaz M A 2021 Ceram. Int. 47 19538 | Effect of filler loading and thickness parameters on the microwave absorption characteristic of double-layered absorber based on MWCNT/BaTiO3/pitted carbonyl iron composite
[15] | Sun X X, Yang M L, Yang S, Wang S S, Yin W L, Che R C, and Li Y B 2019 Small 15 1902974 | Ultrabroad Band Microwave Absorption of Carbonized Waxberry with Hierarchical Structure
[16] | Wang J H, Wing S, and Tan J 2018 Mater. & Des. 153 190 | Enhanced microwave electromagnetic properties of core/shell/shell-structured Ni/SiO2/polyaniline hexagonal nanoflake composites with preferred magnetization and polarization orientations
[17] | Qiu K, Hassan A, Wang J S, Zhang C H, Gao Y L, Khalifa A M, Ding W, Kong X K, Liu Q C, and Sheng Z G 2023 J. Mater. Res. Technol. 22 2328 | Boosting microwave absorption performance of bio-carbon flakes via magneto-alignment
[18] | Gu W H, Sheng J Q, Huang Q Q, Wang G H, Chen J B, and Ji G B 2021 Nano-Micro Lett. 13 102 | Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption
[19] | Tulić S, Waitz T, Čaplovičová M, Habler G, Vretenár V, Susi T, and Skákalová V 2021 Carbon 185 300 | Catalytic graphitization of single-crystal diamond
[20] | Chung S H, Kim H Y, and Jeong S W 2018 Carbon 140 24 | Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment
[21] | Lin F, Yang G, Niu C, Wang Y N, Zhu Z, Luo H K, Dai C, Mayerich D, Hu Y D, Hu J, Zhou X F, Liu Z P, Wang Z M, and Bao J M 2018 Adv. Funct. Mater. 28 1805255 | Graphene Sheets: Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material (Adv. Funct. Mater. 46/2018)
[22] | Tian B, Lin W Y, Zhuang P P, Li J Z, Shih T M, and Cai W W 2018 Carbon 131 66 | Magnetically-induced alignment of graphene via Landau diamagnetism
[23] | Boden A, Boerner B, Kusch P, Firkowska I, and Reich S 2014 Nano Lett. 14 3640 | Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper–Graphite Composites
[24] | Zhou T Z, Yu Y Z, He B, Wang Z, Xiong T, Wang Z X, Liu Y T, Xin J W, Qi M, Zhang H Z, Zhou X H, Gao L H, Cheng Q F, and Wei L 2022 Nat. Commun. 13 4564 | Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses
[25] | Yang X F, Fan B X, Tang X, Wang J L, Tong G X, Chen D B, and Guan J G 2022 Chem. Eng. J. 430 132747 | Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption
[26] | Wang X X, You F F, Wen X Y, Wang K R, Tong G X, and Wu W H 2022 Chem. Eng. J. 445 136431 | Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption
[27] | Yang X F, Liu M M, Lan Y Q, Wu L S, Ji R, Tong G X, Gong P J, and Wu W H 2021 Chem. Eng. J. 426 130779 | Cu2+ induced self-assembly of urchin-like Co1−Cu into hollow microspheres toward wideband and thin microwave absorbers
[28] | Wang X X, Wei H Y, Wen X Y, Xia W X, Tong G X, Liu M M, and Wu W H 2021 J. Alloys Compd. 879 160486 | Salt template-steered sintering synthesis of flaky C/Co composites for ultra-wide band microwave assimilation
[29] | Liu M M, Yang X F, Shao W, Wu T, Ji R, Fan B X, and Tong G X 2021 Carbon 174 625 | Superior microwave absorbing properties of O, S, N codoped carbon planar helixes via carbonization of polypyrrole spiral nanowires
[30] | Lu Y, Shao W, Wu L W, Liu L, Tong G X, and Wu W H 2020 J. Alloys Compd. 847 156509 | Controllable preparation and broadband high-frequency absorption capabilities of Co fibers and Co/Cu bimetallic core-shell fibers
[31] | Yang X F, Fu K, Wu L S, Tang X, Wang J L, Tong G X, Chen D B, and Wu W H 2022 Carbon 199 1 | Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels
[32] | Xing L, Xia H X, Shen K J, He C C, Yang Y J, Tong G X, Wu T, and Wu W H 2023 Carbon 215 118433 | Co-manipulation of defects and porosity for enhancing the electrical insulation, microwave absorbing/shielding, and thermal properties of filter-paper-derived 2D interlinked carbon fiber networks
[33] | Liu M M, Wu L W, Fan B X, Tong G X, Chen D B, and Wu W H 2022 Appl. Surf. Sci. 571 151273 | Governing the Ni content and size of 2D layered C/Ni nanoparticle composites for enhanced electromagnetic wave absorption
[34] | Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X, and Wu W H 2023 Chem. Eng. J. 451 138492 | Synergistically enhanced heat conductivity-microwave absorption capabilities of g-C3N4@Fe@C hollow micro-polyhedra via interface and composition modulation
[35] | Xing L, Chen Y B, Yang Y J, He C C, Wu T, Xia H X, Shen K J, Tong G X, and Wu W H 2023 Chem. Eng. J. 469 143952 | Incorporation of FexOy nanoparticles into 3D interlinked porous carbon nanofiber networks to synergistically enhance the electrical insulation, electromagnetic wave absorbing/shielding performance and thermal conductivity
[36] | Wang X X, You F F, Yao Q B, Wang K R, Liao Y, Tong G X, Wang X J, Wu T, and Wu W H 2023 Mater. Horiz. 10 2677 | Synchronously boosting microwave-absorbing and heat-conducting capabilities in CeO2 /Ce(OH)3 core–shell nanorods/nanofibers via Fe-doping amount control
[37] | You F F, Liu X Y, Ying M W, Yang Y J, Ke Y T, Shen Y, Tong G X, and Wu W H 2023 Mater. Horiz. 10 4609 | In situ generated gas bubble-directed self-assembly of multifunctional MgO-based hybrid foams for highly efficient thermal conduction, microwave absorption, and self-cleaning
[38] | Deng K X, Wu H H, Li Y, Jiang J T, Wang M, Yang Z H, and Zhang R J 2023 J. Alloys Compd. 943 169120 | The resin-ceramic-based Fe3O4/graphite composites rapidly fabricated by selective laser sintering for integration of structural-bearing and broadband electromagnetic wave absorption
[39] | Stanley J S, Logesh G, Ariraman M, Srishilan C, Sindam B, Raju K C, and Mandhakini M 2023 Diamond Relat. Mater. 132 109625 | Tuning the microwave absorption characteristics of r-GO toughened epoxy composites via SiC-induced phase separation
[40] | Qiao Y J, Yao Z D, Li Q W, Ji Y, Li Z N, Zheng T, Zhang X H, and Wang X D 2021 Compos. Part A 150 106626 | Preparation and microwave absorption of CIP/EP hollow spheres lattice composites
[41] | Zhang X, Liu Z C, Deng B W, Cai L, Dong Y Y, Zhu X J, and Lu W 2021 Chem. Eng. J. 419 129547 | Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions
[42] | Zhang D F, Hao Z F, Qian Y N, Zeng B, Zhu H P, Wu Q B, Yan C J, and Chen M Y 2018 Appl. Phys. A 124 374 | The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption
[43] | Rusly S N A, Matori K A, Ismail I, Abbas Z, Awang Z, Zulkimi M M M, Idris F M, Zaid M H M, and Zulfikri N D 2018 J. Mater. Sci.: Mater. Electron. 29 14031 | Microwave absorption properties of single- and double-layer coatings based on strontium hexaferrite and graphite nanocomposite
[44] | Zhao T K, Jin W B, Ji X L, Yan H B, Jiang Y T, Dong Y, Yang Y L, Dang A L, Li H, Li T H, Shang S M, and Zhou Z F 2017 J. Alloys Compd. 712 59 | Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties
[45] | Cai W H, Elveny M, and Akhtar M N 2021 J. Magn. Magn. Mater. 539 168385 | Enhanced X-band wave dissipation performance in bilayer absorber composed of bare epoxy resin and epoxy resin filled with [CaTiO3/ZnFe2O4]@C nanocomposite
[46] | Liu P J, Ng V M H, Yao Z J, Zhou J T, Lei Y M, Yang Z H, and Kong M B 2017 J. Alloys Compd. 701 841 | Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites
[47] | Ye F, Song C Q, Zhou Q, Yin X W, Han M K, Li X L, Zhang L T, and Cheng L F 2018 Materials 11 1771 | Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface