[1] | Maiman T H 1960 Nature 187 493 | Stimulated Optical Radiation in Ruby
[2] | Mankowsky R et al. 2014 Nature 516 71 | Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5
[3] | Mitrano M et al. 2016 Nature 530 461 | Possible light-induced superconductivity in K3C60 at high temperature
[4] | McIver J W et al. 2020 Nat. Phys. 16 38 | Light-induced anomalous Hall effect in graphene
[5] | Duan S F et al. 2021 Nature 595 239 | Optical manipulation of electronic dimensionality in a quantum material
[6] | Kogar A et al. 2020 Nat. Phys. 16 159 | Light-induced charge density wave in LaTe3
[7] | Zhang J et al. 2019 Nano Lett. 19 6027 | Photoexcitation Induced Quantum Dynamics of Charge Density Wave and Emergence of a Collective Mode in 1 T -TaS2
[8] | Wang Y H et al. 2013 Science 342 453 | Observation of Floquet-Bloch States on the Surface of a Topological Insulator
[9] | Zhou S H et al. 2023 Nature 614 75 | Pseudospin-selective Floquet band engineering in black phosphorus
[10] | Pitruzzello G 2022 Nat. Photonics 16 550 | A bright future for attosecond physics
[11] | He L X et al. 2022 Chin. Phys. B 31 123301 | Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
[12] | Hentschel M et al. 2001 Nature 414 509 | Attosecond metrology
[13] | Kienberger R et al. 2004 Nature 427 817 | Atomic transient recorder
[14] | Sansone G et al. 2006 Science 314 443 | Isolated Single-Cycle Attosecond Pulses
[15] | Goulielmakis E et al. 2008 Science 320 1614 | Single-Cycle Nonlinear Optics
[16] | Zhao K et al. 2012 Opt. Lett. 37 3891 | Tailoring a 67 attosecond pulse through advantageous phase-mismatch
[17] | Thomas G et al. 2017 Opt. Express 25 27506 | Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver
[18] | Sekikawa T et al. 2004 Nature 432 605 | Nonlinear optics in the extreme ultraviolet
[19] | Mashiko H et al. 2008 Phys. Rev. Lett. 100 103906 | Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers
[20] | Ferrari F et al. 2010 Nat. Photonics 4 875 | High-energy isolated attosecond pulses generated by above-saturation few-cycle fields
[21] | Xue B et al. 2020 Sci. Adv. 6 eaay2802 | Fully stabilized multi-TW optical waveform synthesizer: Toward gigawatt isolated attosecond pulses
[22] | McPherson A et al. 1987 J. Opt. Soc. Am. B 4 595 | Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases
[23] | Zong A et al. 2023 Nat. Rev. Mater. 8 224 | Emerging ultrafast techniques for studying quantum materials
[24] | Geneaux R et al. 2019 Philos. Trans. R. Soc. A 377 20170463 | Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids
[25] | Goulielmakis E et al. 2022 Nat. Photonics 16 411 | High harmonic generation in condensed matter
[26] | Wu M X et al. 2015 Phys. Rev. A 91 043839 | High-harmonic generation from Bloch electrons in solids
[27] | Vampa G et al. 2015 Phys. Rev. B 91 064302 | Semiclassical analysis of high harmonic generation in bulk crystals
[28] | Chin A H et al. 2001 Phys. Rev. Lett. 86 3292 | Extreme Midinfrared Nonlinear Optics in Semiconductors
[29] | Ghimire S et al. 2011 Nat. Phys. 7 138 | Observation of high-order harmonic generation in a bulk crystal
[30] | Vampa G et al. 2015 Phys. Rev. Lett. 115 193603 | All-Optical Reconstruction of Crystal Band Structure
[31] | Lanin A A et al. 2017 Optica 4 516 | Mapping the electron band structure by intraband high-harmonic generation in solids
[32] | Lv Y Y et al. 2021 Nat. Commun. 12 6437 | High-harmonic generation in Weyl semimetal β-WP2 crystals
[33] | Luu T et al. 2018 Nat. Commun. 9 916 | Measurement of the Berry curvature of solids using high-harmonic spectroscopy
[34] | Bai Y et al. 2021 Nat. Phys. 17 311 | High-harmonic generation from topological surface states
[35] | Schmid C P et al. 2021 Nature 593 385 | Tunable non-integer high-harmonic generation in a topological insulator
[36] | You Y et al. 2017 Nat. Phys. 13 345 | Anisotropic high-harmonic generation in bulk crystals
[37] | Lakhotia H et al. 2020 Nature 583 55 | Laser picoscopy of valence electrons in solids
[38] | Hu S et al. 2023 Nat. Commun. (submitted) |
[39] | Mashiko H et al. 2016 Nat. Phys. 12 741 | Petahertz optical drive with wide-bandgap semiconductor
[40] | Schlaepfer F et al. 2018 Nat. Phys. 14 560 | Attosecond optical-field-enhanced carrier injection into the GaAs conduction band
[41] | Schultze M et al. 2013 Nature 493 75 | Controlling dielectrics with the electric field of light
[42] | Martin S et al. 2014 Science 346 1348 | Attosecond band-gap dynamics in silicon
[43] | Emin D and Hart C F 1987 Phys. Rev. B 36 7353 | Existence of Wannier-Stark localization
[44] | Lucchini M et al. 2016 Science 353 916 | Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond
[45] | Sidiropoulos T P H et al. 2021 Phys. Rev. X 11 041060 | Probing the Energy Conversion Pathways between Light, Carriers, and Lattice in Real Time with Attosecond Core-Level Spectroscopy
[46] | Ossiander M et al. 2018 Nature 561 374 | Absolute timing of the photoelectric effect
[47] | Haynes D C et al. 2021 Nat. Phys. 17 512 | Clocking Auger electrons
[48] | Fabian S et al. 2017 Science 357 1274 | Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions
[49] | Seth L C 2017 Phys. Rev. X 7 041030 | Attosecond Streaking in the Water Window: A New Regime of Attosecond Pulse Characterization
[50] | Ito et al. 2023 Nature 616 696 | Build-up and dephasing of Floquet–Bloch bands on subcycle timescales
[51] | Cavalieri A et al. 2007 Nature 449 1029 | Attosecond spectroscopy in condensed matter
[52] | Garg M et al. 2022 Nat. Photonics 16 196 | Real-space subfemtosecond imaging of quantum electronic coherences in molecules
[53] | Nabben D et al. 2023 Nature 619 63 | Attosecond electron microscopy of sub-cycle optical dynamics
[54] | Tao Z S et al. 2016 Science 353 62 | Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids
[55] | Heinrich S et al. 2021 Nat. Commun. 12 3404 | Attosecond intra-valence band dynamics and resonant-photoemission delays in W(110)
[56] | Corkum P B 1993 Phys. Rev. Lett. 71 1994 | Plasma perspective on strong field multiphoton ionization
[57] | Lewenstein M et al. 1994 Phys. Rev. A 49 2117 | Theory of high-harmonic generation by low-frequency laser fields
[58] | Schultze M et al. 2010 Science 328 1658 | Delay in Photoemission
[59] | Kelkensberg F et al. 2011 Phys. Rev. Lett. 107 043002 | Attosecond Control in Photoionization of Hydrogen Molecules
[60] | Siu W et al. 2011 Phys. Rev. A 84 063412 | Attosecond control of dissociative ionization of O molecules
[61] | Ranitovic P et al. 2014 Proc. Natl. Acad. Sci. USA 111 912 | Attosecond vacuum UV coherent control of molecular dynamics
[62] | Calegari F et al. 2014 Science 346 336 | Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses
[63] | Kraus P M et al. 2015 Science 350 790 | Measurement and laser control of attosecond charge migration in ionized iodoacetylene
[64] | Matselyukh D T et al. 2022 Nat. Phys. 18 1206 | Decoherence and revival in attosecond charge migration driven by non-adiabatic dynamics
[65] | Sommer A et al. 2016 Nature 534 86 | Attosecond nonlinear polarization and light–matter energy transfer in solids
[66] | Volkov M et al. 2019 Nat. Phys. 15 1145 | Attosecond screening dynamics mediated by electron localization in transition metals
[67] | Hui D D et al. 2022 Nat. Photonics 16 33 | Attosecond electron motion control in dielectric
[68] | Amusia M Y et al. 2000 Rep. Prog. Phys. 63 41 | The theory of collective motion probed by light
[69] | Schumacher Z et al. 2023 Proc. Natl. Acad. Sci. USA 120 e2221725120 | Ultrafast electron localization and screening in a transition metal dichalcogenide
[70] | Krausz F et al. 2014 Nat. Photonics 8 205 | Attosecond metrology: from electron capture to future signal processing
[71] | Karni O et al. 2019 Phys. Rev. Lett. 123 247402 | Infrared Interlayer Exciton Emission in Heterostructures
[72] | Novoselov K S et al. 2016 Science 353 aac9439 | 2D materials and van der Waals heterostructures
[73] | Unuchek D et al. 2018 Nature 560 340 | Room-temperature electrical control of exciton flux in a van der Waals heterostructure
[74] | Moulet A et al. 2017 Science 357 1134 | Soft x-ray excitonics
[75] | Lucchini M et al. 2021 Nat. Commun. 12 1021 | Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy
[76] | Lucchini M et al. 2020 J. Phys.: Photonics 2 025001 | Attosecond timing of the dynamical Franz–Keldysh effect
[77] | Freudenstein J et al. 2022 Nature 610 290 | Attosecond clocking of correlations between Bloch electrons
[78] | Xu X D et al. 2014 Nat. Phys. 10 343 | Spin and pseudospins in layered transition metal dichalcogenides
[79] | Langer F et al. 2018 Nature 557 76 | Lightwave valleytronics in a monolayer of tungsten diselenide
[80] | John K D et al. 2018 Nano Lett. 18 1842 | Laser-Induced Intersite Spin Transfer
[81] | Lambert C H et al. 2014 Science 345 1337 | All-optical control of ferromagnetic thin films and nanostructures
[82] | Kimel A et al. 2004 Nature 429 850 | Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3
[83] | Le Guyader L et al. 2013 Phys. Rev. B 87 054437 | Dynamics of laser-induced spin reorientation in Co/SmFeO heterostructure
[84] | Paolo C et al. 1993 Phys. Rev. Lett. 70 694 | X-ray circular dichroism and local magnetic fields
[85] | Cui L S et al. 2020 Nat. Photonics 14 636 | Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states
[86] | Shankar S et al. 2018 Nat. Commun. 9 4750 | Light-controlled switching of the spin state of iron(III)
[87] | Wu N et al. 2023 Prog. Surf. Sci. 2023 100709 | Ultrafast all-optical quantum control of magnetization dynamics
[88] | Beaurepaire E et al. 1996 Phys. Rev. Lett. 76 4250 | Ultrafast Spin Dynamics in Ferromagnetic Nickel
[89] | Chen Z H et al. 2019 Sci. Adv. 5 eaau8000 | Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms
[90] | Neufeld O et al. 2023 npj Comput. Mater. 9 39 | Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers
[91] | Siegrist F et al. 2019 Nature 571 240 | Light-wave dynamic control of magnetism
[92] | Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (New York: McGraw-Hill) |
[93] | Mei X B et al. 2015 IEEE Electron Device Lett. 36 327 | First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process
[94] | Tim P C et al. 2016 Optica 3 1358 | Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime
[95] | Korobenko A et al. 2020 Optica 7 1372 | Femtosecond streaking in ambient air
[96] | Schiffrin A et al. 2013 Nature 493 70 | Optical-field-induced current in dielectrics
[97] | Luu T et al. 2015 Nature 521 498 | Extreme ultraviolet high-harmonic spectroscopy of solids
[98] | Husain A et al. 2022 Faraday Discuss. 237 317 | Attosecond electronic delay response in dielectric materials
[99] | Georg W et al. 2014 Phys. Rev. Lett. 113 087401 | Ab Initio Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials
[100] | Itatani J et al. 2002 Phys. Rev. Lett. 88 173903 | Attosecond Streak Camera
[101] | Goulielmakis E et al. 2004 Science 305 1267 | Direct Measurement of Light Waves
[102] | Garg M et al. 2016 Nature 538 359 | Multi-petahertz electronic metrology
[103] | Husain A et al. 2022 APL Photonics 7 041301 | Attosecond light field synthesis
[104] | Hui D D et al. 2023 Sci. Adv. 9 eadf1015 | Ultrafast optical switching and data encoding on synthesized light fields
[105] | Neufeld O et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2204219119 | Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy
[106] | Bionta M R et al. 2021 Phys. Rev. Res. 3 023250 | Tracking ultrafast solid-state dynamics using high harmonic spectroscopy
[107] | Hu S et al. 2023 arXiv:2304.09459 [cond-mat.mtrl-sci] | Probing Phonon dynamics and Electron-Phonon Coupling by High Harmonic Generation in Solids
[108] | Drozdov A P et al. 2015 Nature 525 73 | Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
[109] | Drozdov A P et al. 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[110] | Lein M 2005 Phys. Rev. Lett. 94 053004 | Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation
[111] | Baker S et al. 2006 Science 312 424 | Probing Proton Dynamics in Molecules on an Attosecond Time Scale
[112] | Li W et al. 2008 Science 322 1207 | Time-Resolved Dynamics in N2 O4 Probed Using High Harmonic Generation
[113] | Rana N et al. 2022 Phys. Rev. B 106 064303 | High-harmonic spectroscopy of coherent lattice dynamics in graphene
[114] | Tikhomirov I D et al. 2017 Phys. Rev. Lett. 118 203202 | High-Harmonic Generation Enhanced by Dynamical Electron Correlation
[115] | Silva R E F et al. 2018 Nat. Photonics 12 266 | High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems
[116] | Murakami Y et al. 2018 Phys. Rev. Lett. 121 057405 | High-Harmonic Generation in Mott Insulators
[117] | Imai S et al. 2020 Phys. Rev. Lett. 124 157404 | High Harmonic Generation in a Correlated Electron System
[118] | Uchida K et al. 2022 Phys. Rev. Lett. 128 127401 | High-Order Harmonic Generation and Its Unconventional Scaling Law in the Mott-Insulating
[119] | Nicolas T D et al. 2018 Phys. Rev. Lett. 121 097402 | Ultrafast Modification of Hubbard in a Strongly Correlated Material: Ab initio High-Harmonic Generation in NiO
[120] | Xu J Y et al. 2022 Sci. Adv. 8 eadd2392 | Decoupled ultrafast electronic and structural phase transitions in photoexcited monoclinic VO2
[121] | Shao C et al. 2022 Phys. Rev. Lett. 128 047401 | High-Harmonic Generation Approaching the Quantum Critical Point of Strongly Correlated Systems
[122] | Neufeld O et al. 2023 Phys. Rev. X 13 031011 | Are There Universal Signatures of Topological Phases in High-Harmonic Generation? Probably Not.
[123] | Qian C et al. 2022 Phys. Rev. X 12 021030 | Role of Shift Vector in High-Harmonic Generation from Noncentrosymmetric Topological Insulators under Strong Laser Fields
[124] | Uzan-Narovlansky A et al. 2022 Research Square | Observation of interband Berry phase in laser driven crystals
[125] | Rohwer T et al. 2011 Nature 471 490 | Collapse of long-range charge order tracked by time-resolved photoemission at high momenta
[126] | Lian C et al. 2020 Nat. Commun. 11 43 | Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2
[127] | Lin Z J et al. 2022 Phys. Rev. Lett. 129 187601 | Dramatic Plasmon Response to the Charge-Density-Wave Gap Development in
[128] | Lu Y F et al. 2017 Nat. Commun. 8 14408 | Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5
[129] | Kim K et al. 2021 Nat. Commun. 12 1969 | Direct observation of excitonic instability in Ta2NiSe5
[130] | Wang Z et al. 2019 Nature 574 76 | Evidence of high-temperature exciton condensation in two-dimensional atomic double layers
[131] | Brenden R O et al. 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[132] | Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV3 Sb5 Single Crystals
[133] | Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402 | Highly Robust Reentrant Superconductivity in CsV3 Sb5 under Pressure
[134] | Nie L P et al. 2022 Nature 604 59 | Charge-density-wave-driven electronic nematicity in a kagome superconductor
[135] | Jiang Y X et al. 2021 Nat. Mater. 20 1353 | Unconventional chiral charge order in kagome superconductor KV3Sb5
[136] | Chen H et al. 2021 Nature 599 222 | Roton pair density wave in a strong-coupling kagome superconductor
[137] | Brenden R O et al. 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[138] | Yang S Y et al. 2020 Sci. Adv. 6 eabb6003 | Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3 Sb5
[139] | Zheng L X et al. 2022 Nature 611 682 | Emergent charge order in pressurized kagome superconductor CsV3Sb5
[140] | Zhong Y Q et al. 2023 Nature 617 488 | Nodeless electron pairing in CsV3Sb5-derived kagome superconductors
[141] | Teng X K et al. 2022 Nature 609 490 | Discovery of charge density wave in a kagome lattice antiferromagnet
[142] | Laura R et al. 2022 arXiv:2206.01719 [physics.optics] | Tilting light's polarization plane to spatially separate the nonlinear optical response of chiral molecules on ultrafast timescales
[143] | Sambit M et al. 2023 arXiv:2303.13044 [cond-mat.mes-hall] | Lightwave-controlled band engineering in quantum materials