[1] | Jani H, Lin J C, Chen J, Harrison J, Maccherozzi F, Schad J, Prakash S, Eom C B, Ariando A, Venkatesan T, and Radaelli P G 2021 Nature 590 74 | Antiferromagnetic half-skyrmions and bimerons at room temperature
[2] | Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, and Hoffmann A 2015 Science 349 283 | Blowing magnetic skyrmion bubbles
[3] | Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031 | Magnetic skyrmions: advances in physics and potential applications
[4] | Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915 | Skyrmion Lattice in a Chiral Magnet
[5] | Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, and Tokura Y 2010 Nature 465 901 | Real-space observation of a two-dimensional skyrmion crystal
[6] | Zhang H R, Raftrey D, Chan Y T, Shao Y T, Chen R, Chen X, Huang X, Reichanadter J T, Dong K, Susarla S, Caretta L, Chen Z, Yao J, Fischer P, Neaton J B, Wu W, Muller D A, Birgeneau R J, and Ramesh R 2022 Sci. Adv. 8 eabm7103 | Room-temperature skyrmion lattice in a layered magnet (Fe0.5 Co0.5 )5 GeTe2
[7] | Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, and Jiang W J 2022 Chin. Phys. Lett. 39 017501 | The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques
[8] | Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, and Tokura Y 2019 Science 365 914 | Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet
[9] | Skoropata E, Nichols J, Ok J M, Chopdekar R V, Choi E S, Rastogi A, Sohn C, Gao X, Yoon S, Farmer T, Desautels R D, Choi Y, Haskel D, Freeland J W, Okamoto S, Brahlek M, and Lee H N 2020 Sci. Adv. 6 eaaz3902 | Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO3 /SrIrO3 heterostructures
[10] | Shao Q M, Liu Y W, Yu G Q, Kim S K, Che X Y, Tang C, He Q L, Tserkovnyak Y, Shi J, and Wang K L 2019 Nat. Electron. 2 182 | Topological Hall effect at above room temperature in heterostructures composed of a magnetic insulator and a heavy metal
[11] | Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, and Wang K L 2020 Nat. Commun. 11 3860 | Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure
[12] | Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, and Panagopoulos C 2017 Nat. Mater. 16 898 | Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
[13] | Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S, Li P, and Bian G 2021 ACS Nano 15 15710 | Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2 /Bi2 Te3
[14] | Wu Y Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, Han X, Chi H, Hou Y, Lodesani A, Yin G, Liu K, Cui Y T, Wang K L, and Moodera J S 2022 Adv. Mater. 34 e2110583 | A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions
[15] | Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, and Zhao J H 2020 Chin. Phys. Lett. 37 077303 | Unusual Anomalous Hall Effect in a Co2 MnSi/MnGa/Pt Trilayer
[16] | Liang D, DeGrave J P, Stolt M J, Tokura Y, and Jin S 2015 Nat. Commun. 6 8217 | Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect
[17] | Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, and Rosch A 2012 Nat. Phys. 8 301 | Emergent electrodynamics of skyrmions in a chiral magnet
[18] | Lim Z S, Li C J, Huang Z, Chi X, Zhou J, Zeng S, Omar G J, Feng Y P, Rusydi A, Pennycook S J, Venkatesan T, and Ariando A 2020 Small 16 e2004683 | Emergent Topological Hall Effect at a Charge‐Transfer Interface
[19] | Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A, and Pfleiderer C 2013 Phys. Rev. B 87 134424 | Giant generic topological Hall resistivity of MnSi under pressure
[20] | Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 | Extended Skyrmion Phase in Epitaxial Thin Films
[21] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067 | Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy
[22] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patanè A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501 | Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
[23] | Jin W, Zhang G, Wu H, Yang L, Zhang W, and Chang H 2023 Chin. Phys. Lett. 40 057301 | Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics
[24] | Kimbell G, Kim C, Wu W, Cuoco M, and Robinson J W A 2022 Commun. Mater. 3 19 | Challenges in identifying chiral spin textures via the topological Hall effect
[25] | Tai L X, Dai B Q, Li J, Huang H, Chong S K, Wong K L, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, He H, Wu D, Xu S, Davydov A, Wu R, and Wang K L 2022 ACS Nano 16 17336 | Distinguishing the Two-Component Anomalous Hall Effect from the Topological Hall Effect
[26] | Jeon J H, Na H R, Kim H, Lee S, Song S, Kim J, Park S, Kim J, Noh H, Kim G, Jerng S K, and Chun S H 2022 ACS Nano 16 8974 | Emergent Topological Hall Effect from Exchange Coupling in Ferromagnetic Cr2 Te3 /Noncoplanar Antiferromagnetic Cr2 Se3 Bilayers
[27] | Park T E, Peng L, Liang J, Hallal A, Yasin F S, Zhang X, Song K M, Kim S J, Kim K, Weigand M, Schütz G, Finizio S, Raabe J, Garcia K, Xia J, Zhou Y, Ezawa M, Liu X, Chang J, Koo H C, Kim Y D, Chshiev M, Fert A, Yang H, Yu X, and Woo S 2021 Phys. Rev. B 103 104410 | Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures
[28] | Peng L C, Yasin F S, Park T E, Kim S J, Zhang X, Nagai T, Kimoto K, Woo S, and Yu X 2021 Adv. Funct. Mater. 31 2103583 | Tunable Néel–Bloch Magnetic Twists in Fe3 GeTe2 with van der Waals Structure
[29] | Wang W B, Zhao Y F, Wang F, Daniels M W, Chang C Z, Zang J, Xiao D, and Wu W 2021 Nano Lett. 21 1108 | Chiral-Bubble-Induced Topological Hall Effect in Ferromagnetic Topological Insulator Heterostructures
[30] | Sapozhnikov M V, Gusev N S, Gusev S A, Tatarskiy D A, Petrov Y V, Temiryazev A G, and Fraerman A A 2021 Phys. Rev. B 103 054429 | Direct observation of topological Hall effect in Co/Pt nanostructured films
[31] | Zang J D, Mostovoy M, Han J H, and Nagaosa N 2011 Phys. Rev. Lett. 107 136804 | Dynamics of Skyrmion Crystals in Metallic Thin Films
[32] | Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 | Topological properties and dynamics of magnetic skyrmions
[33] | Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M, and Beach G S 2016 Nat. Mater. 15 501 | Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
[34] | Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, and Chang J 2018 Nat. Commun. 9 959 | Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films
[35] | Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, and Wang K L 2017 Nano Lett. 17 261 | Room-Temperature Skyrmion Shift Device for Memory Application
[36] | Chen G, Mascaraque A, Jia H, Zimmermann B, Robertson M, Conte R L, Hoffmann M, Barrio M A G, Ding H, Wiesendanger R, Michel E G, Blügel S, Schmid A K, and Liu K 2020 Sci. Adv. 6 eaba4924 | Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface
[37] | Arora M, Shaw J M, and Nembach H T 2020 Phys. Rev. B 101 054421 | Variation of sign and magnitude of the Dzyaloshinskii-Moriya interaction of a ferromagnet with an oxide interface
[38] | Belabbes A, Bihlmayer G, Blugel S, and Manchon A 2016 Sci. Rep. 6 24634 | Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films
[39] | Kresse G and ller J F 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[40] | Blöchl P E, Jepsen O, and Andersen O K 1994 Phys. Rev. B 49 16223 | Improved tetrahedron method for Brillouin-zone integrations
[41] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[42] | Payne M C, Teter M P, Allan D C, Arias T A, and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients
[43] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[44] | Grimme S 2006 J. Comput. Chem. 27 1787 | Semiempirical GGA-type density functional constructed with a long-range dispersion correction
[45] | Xiang H J, Kan E J, Wei S H, Whangbo M H, and Gong X G 2011 Phys. Rev. B 84 224429 | Predicting the spin-lattice order of frustrated systems from first principles
[46] | Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 | A grid-based Bader analysis algorithm without lattice bias
[47] | Yang H X, Thiaville A, Rohart S, Fert A, and Chshiev M 2015 Phys. Rev. Lett. 115 267210 | Anatomy of Dzyaloshinskii-Moriya Interaction at Interfaces
[48] | Yang H X, Liang J H, and Cui Q R 2023 Nat. Rev. Phys. 5 43 | First-principles calculations for Dzyaloshinskii–Moriya interaction
[49] | Moriya T 1960 Phys. Rev. 120 91 | Anisotropic Superexchange Interaction and Weak Ferromagnetism