[1] | Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1 | Fundamental aspects of steady-state conversion of heat to work at the nanoscale
[2] | Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001 | Thermoelectric energy harvesting with quantum dots
[3] | Jordan A N, Sothmann B, Sánchez R, and Buttiker M 2013 Phys. Rev. B 87 075312 | Powerful and efficient energy harvester with resonant-tunneling quantum dots
[4] | Jiang J H 2014 J. Appl. Phys. 116 194303 | Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects
[5] | Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422 | Near-field three-terminal thermoelectric heat engine
[6] | Lin Z B, Li W, Fu J, Yang Y Y, and He J Z 2019 Chin. Phys. Lett. 36 060501 | A Three-Terminal Quantum Well Heat Engine with Heat Leakage
[7] | Lin Z B, Yang Y Y, Li W, Wang J H, and He J Z 2020 Phys. Rev. E 101 022117 | Three-terminal refrigerator based on resonant-tunneling quantum wells
[8] | Su G Z, Zhang Y C, Cai L, Su S H, and Chen J C 2015 Energy 90 1842 | Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons
[9] | Su H, Wang J W, Zhao Q Y, and He J Z 2016 Sci. Sin. Technol. 46 1296 (in Chinese) | A three-terminal quantum dot heat engine based on ideal resonant tunneling
[10] | Yang Y Y, Xu S, Li W, and He J Z 2020 Phys. Scr. 95 095001 | Optimal performance of three-terminal nanowire heat engine based on one-dimensional ballistic conductors
[11] | Yang Y Y, Xu S, and He J Z 2020 Chin. Phys. Lett. 37 120502 | Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures
[12] | Choi Y and Jordan A N 2015 Physica E 74 465 | Three-terminal heat engine and refrigerator based on superlattices
[13] | Chen L G, Ding Z M, and Sun F R 2011 Energy 36 4011 | Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics
[14] | Shi Z C, Fu J Q W F, and He J Z 2017 Chin. Phys. Lett. 34 110501 | Thermodynamic Performance of Three-Terminal Hybrid Quantum Dot Thermoelectric Devices*
[15] | Jiang J H, Entin-Wohlman O, and Imry Y 2013 New J. Phys. 15 075021 | Three-terminal semiconductor junction thermoelectric devices: improving performance
[16] | Li C, Zhang Y, and He J 2013 Chin. Phys. Lett. 30 100501 | A Nanosize Quantum-Dot Photoelectric Refrigerator
[17] | Rutten B, Esposito M, and Cleuren B 2009 Phys. Rev. B 80 235122 | Reaching optimal efficiencies using nanosized photoelectric devices
[18] | Cleuren B, Rutten B, and Van den Broeck C 2012 Phys. Rev. Lett. 108 120603 | Cooling by Heating: Refrigeration Powered by Photons
[19] | Shi Z C, He J Z, and Xiao Y L 2015 Sci. Sin. Phys. Mech. Astron. 45 050502 (in Chinese) | The hybrid driven quantum dot refrigerator
[20] | Li C, Zhang Y, Wang J H, and He J Z 2013 Phys. Rev. E 88 062120 | Performance characteristics and optimal analysis of a nanosized quantum dot photoelectric refrigerator
[21] | Li W, Fu J, Yang Y Y, and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese) | Quantum dot refrigerator driven by photon
[22] | Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314 | Three-terminal thermoelectric transport through a molecular junction
[23] | Thierschmann H, S'anchez R, Sothmann B, Buhmann H, and Monlenkamp L W 2016 C. R. Phys. 17 1109 | Thermoelectrics with Coulomb-coupled quantum dots
[24] | Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, and Liao Q H 2015 Phys. Rev. E 91 050102(R) | Four-level refrigerator driven by photons
[25] | Erdman P A, Bhandari B, Fazio R, Pekola J P, and Taddei F 2018 Phys. Rev. B 98 045433 | Absorption refrigerators based on Coulomb-coupled single-electron systems
[26] | Dare A M 2019 Phys. Rev. B 100 195427 | Comparative study of heat-driven and power-driven refrigerators with Coulomb-coupled quantum dots
[27] | Ren J, Zhu J X, Gubernatis J E, Wang C, and Li B 2012 Phys. Rev. B 85 155443 | Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions
[28] | Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003 | Coulomb drag
[29] | Yang J, Elouard C, Splettstoesser J, Sothmann B, S'anchez R, and Jordan A N 2019 Phys. Rev. B 100 045418 | Thermal transistor and thermometer based on Coulomb-coupled conductors
[30] | Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428 | Optimal energy quanta to current conversion
[31] | Thierschmann H, Sánchez R, Sothmann B, Arnold F, Hansen W, Buhmann H, and Monlenkamp L W 2015 Nat. Nanotechnol. 10 854 | Three-terminal energy harvester with coupled quantum dots
[32] | Zhang Y C, Lin G X, and Chen J C 2015 Phys. Rev. E 91 052118 | Three-terminal quantum-dot refrigerators
[33] | Singha A 2020 J. Appl. Phys. 127 234903 | A realistic non-local heat engine based on Coulomb-coupled systems
[34] | Barman A, Halder S, Varshney S K, Dutta G, and Singha A 2021 Phys. Rev. E 103 012131 | Realistic nonlocal refrigeration engine based on Coulomb-coupled systems
[35] | Roche B, Roulleau P, Jullien T, Jompol Y, Farrer I, Ritchie D A, and Glattli D A 2015 Nat. Commun. 6 6738 | Harvesting dissipated energy with a mesoscopic ratchet
[36] | Hartmann F, Pfeffer P, Hǒfling S, Kamp M, and Worschech L 2015 Phys. Rev. Lett. 114 146805 | Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots
[37] | Josefsson M, Svilans A, Burke A, Hoffmann E, Fahlvik S, Thelander C, Leijnse M, and Linke H 2018 Nat. Nanotechnol. 13 920 | A quantum-dot heat engine operating close to the thermodynamic efficiency limits
[38] | Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, and Ritchie D A 2009 Phys. Rev. Lett. 102 146602 | Electronic Refrigeration of a Two-Dimensional Electron Gas
[39] | Keller A J, Lim J S, Sánchez R, Lopez R, Amasha S, Katine J A, Shtrikman H, and Goldhaber-Gordon D 2016 Phys. Rev. Lett. 117 066602 | Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
[40] | Whitney R S, Sánchez R, Haupt F, and Splettstoesser J 2016 Physica E 82 176 | Reprint of : Thermoelectricity without absorbing energy from the heat sources
[41] | Fu T, Du J, Su S, Su G, and Chen J 2021 Eur. Phys. J. Plus 136 1059 | Quantum thermodynamic pump driven by Maxwell’s demon
[42] | Xi M M, Wang R Q, Lu J C, and Jiang J H 2021 Chin. Phys. Lett. 38 088801 | Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport
[43] | Lu J C, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429 | Unconventional four-terminal thermoelectric transport due to inelastic transport: Cooling by transverse heat current, transverse thermoelectric effect, and Maxwell demon
[44] | Liu X, Xu S, Gao J Z, and He J Z 2022 Acta. Phys. Sin. 71 190502 (in Chinese) | Four-terminal hybrid driven refrigerator based on three coupled quantum dots
[45] | Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123 | Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation