[1] | Tanaka G, Yamane T, Héroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, and Hirose A 2019 Neural Networks 115 100 | Recent advances in physical reservoir computing: A review
[2] | Jaeger H and Haas H 2004 Science 304 78 | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
[3] | Nakajima K 2020 Jpn. J. Appl. Phys. 59 060501 | Physical reservoir computing—an introductory perspective
[4] | Qi Z Y, Mi L J, Qian H R, Zheng W G, Guo Y, and Chai Y 2023 Adv. Funct. Mater. 2023 2306149 | Physical Reservoir Computing Based on Nanoscale Materials and Devices
[5] | Du C, Cai F, Zidan M A, Ma W, Lee S H, and Lu W D 2017 Nat. Commun. 8 2204 | Reservoir computing using dynamic memristors for temporal information processing
[6] | Midya R, Wang Z, Asapu S, Zhang X, Rao M, Song W, Zhuo Y, Upadhyay N, Xia Q, and Yang J J 2019 Adv. Intell. Syst. 1 1900084 | Reservoir Computing Using Diffusive Memristors
[7] | Moon J, Ma W, Shin J H, Cai F, Du C, Lee S H, and Lu W D 2019 Nat. Electron. 2 480 | Temporal data classification and forecasting using a memristor-based reservoir computing system
[8] | Zhong Y N, Tang J S, Li X Y, Gao B, Qian H, and Wu H G 2021 Nat. Commun. 12 408 | Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
[9] | Liang X P, Zhong Y N, Tang J S, Liu Z W, Yao P, Sun K Y, Zhang Q T, Gao B, Heidari H, Qian H, and Wu H Q 2022 Nat. Commun. 13 1549 | Rotating neurons for all-analog implementation of cyclic reservoir computing
[10] | Sun L F, Wang Z R, Jiang J B, Kim Y J, Joo B M, Zheng S J, Lee S, Yu W J, Kong B S, and Yang H 2021 Sci. Adv. 7 eabg1455 | In-sensor reservoir computing for language learning via two-dimensional memristors
[11] | Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R, and Yang Y H 2022 Nat. Electron. 5 761 | An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing
[12] | Jiang N J, Tang J, Zhang W Y, Li Y, Li N, Li X Z, Chen X, Fang R R, Guo Z Y, Wang F, Wang J, Li Z, He C, Zhang G, Wang Z, and Shang D 2023 Adv. Opt. Mater. 11 2300271 | Bioinspired In‐Sensor Reservoir Computing for Self‐Adaptive Visual Recognition with Two‐Dimensional Dual‐Mode Phototransistors
[13] | Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q, Yan J M, Kang J F, Ahn J H, and Chai Y 2023 Nat. Nanotechnol. 18 882 | Optoelectronic graded neurons for bioinspired in-sensor motion perception
[14] | Milano G, Pedretti G, Montano K, Ricci S, Hashemkhani S, Boarino L, Ielmini D, and Ricciardi C 2022 Nat. Mater. 21 195 | In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks
[15] | Tanaka H, Akai-Kasaya M, Termehyousefi A, Hong L, Fu L, Tamukoh H, Tanaka D, Asai T, and Ogawa T 2018 Nat. Commun. 9 2693 | A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate
[16] | Liu K Q, Dang B J, Zhang T, Yang Z, Bao L, Xu L Y, Cheng C D, Huang R, and Yang Y C 2022 Adv. Mater. 34 2108826 | Multilayer Reservoir Computing Based on Ferroelectric α‐In2 Se3 for Hierarchical Information Processing
[17] | Toprasertpong K, Nako E, Wang Z, Nakane R, Takenaka M, and Takagi S 2022 Commun. Eng. 1 21 | Reservoir computing on a silicon platform with a ferroelectric field-effect transistor
[18] | Prychynenko D, Sitte M, Litzius K, Krüger B, Bourianoff G, Kläui M, Sinova J, and Everschor-Sitte K 2018 Phys. Rev. Appl. 9 014034 | Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing
[19] | Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Stiles M D, and Grollier J 2017 Nature 547 428 | Neuromorphic computing with nanoscale spintronic oscillators
[20] | Jiang W C, Chen L, Zhou K Y, Li L Y, Fu Q W, Du Y W, and Liu R H 2019 Appl. Phys. Lett. 115 192403 | Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator
[21] | Wu X S, Wang S C, Huang W, Dong Y, Wang Z R, and Huang W G 2023 Nat. Commun. 14 468 | Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning
[22] | Wang S J, Chen X, Zhao C, Kong Y X, Lin B J, Wu Y Y, Bi Z Z, Xuan Z Y, Li T, Li Y X, Zhang W, Ma E, Wang Z R, and Ma W 2023 Nat. Electron. 6 281 | An organic electrochemical transistor for multi-modal sensing, memory and processing
[23] | Usami Y, van de Ven B, Mathew D G, Chen T, Kotooka T, Kawashima Y, Tanaka Y, Otsuka Y, Ohoyama H, Tamukoh H, Tanaka H, van der Wiel W G, and Matsumoto T 2021 Adv. Mater. 33 2102688 | In‐Materio Reservoir Computing in a Sulfonated Polyaniline Network
[24] | Abbott L F and Regehr W G 2004 Nature 431 796 | Synaptic computation
[25] | Chen Z W, Li W J, Fan Z, Dong S, Chen Y H, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, and Liu J M 2023 Nat. Commun. 14 3585 | All-ferroelectric implementation of reservoir computing
[26] | Zhong Y N, Tang J S, Li X Y, Liang X P, Liu Z W, Li Y J, Xi Y, Yao P, Hao Z Q, Gao B, Qian H, and Wu H Q 2022 Nat. Electron. 5 672 | A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing
[27] | Jiang H, Belkin D, Savel'ev S E, Lin S, Wang Z, Li Y, Joshi S, Midya R, Li C, Rao M, Barnell M, Wu Q, Yang J J, and Xia Q 2017 Nat. Commun. 8 882 | A novel true random number generator based on a stochastic diffusive memristor
[28] | Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q, and Yang J J 2017 Nat. Mater. 16 101 | Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
[29] | Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F, and Yang J J 2020 Nat. Rev. Mater. 5 173 | Resistive switching materials for information processing
[30] | Khan A I, Keshavarzi A, and Datta S 2020 Nat. Electron. 3 588 | The future of ferroelectric field-effect transistor technology
[31] | Mulaosmanovic H, Mikolajick T, and Slesazeck S 2018 IEEE Electron Device Lett. 39 135 | Random Number Generation Based on Ferroelectric Switching
[32] | Chen G R, Jiang L L, Wu S, Lyu B S, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y B, and Wang F 2019 Nat. Phys. 15 237 | Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
[33] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[34] | Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, Macdonald A H, and Efetov D K 2019 Nature 574 653 | Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
[35] | Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2020 Nature 588 610 | Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
[36] | Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, and Miao F 2022 Nature 609 479 | Tunable quantum criticalities in an isospin extended Hubbard model simulator
[37] | Li T X, Jiang S W, Li L Z, Zhang Y, Kang K F, Zhu J C, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, and Mak K F 2021 Nature 597 350 | Continuous Mott transition in semiconductor moiré superlattices
[38] | Li H Y, Li S W, Regan E C, Wang D, Zhao W Y, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, and Wang F 2021 Nature 597 650 | Imaging two-dimensional generalized Wigner crystals
[39] | Regan E C, Wang D, Jin C, Bakti U M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, and Wang F 2020 Nature 579 359 | Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices
[40] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[41] | Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, and Jarillo-Herrero P 2021 Science 372 264 | Nematicity and competing orders in superconducting magic-angle graphene
[42] | Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059 | Tuning superconductivity in twisted bilayer graphene
[43] | Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y B, and Wang F 2019 Nature 572 215 | Signatures of tunable superconductivity in a trilayer graphene moiré superlattice
[44] | Park J M, Cao Y, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 590 249 | Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene
[45] | Hao Z Y, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, and Kim P 2021 Science 371 1133 | Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene
[46] | Niu R R, Li Z X, Han X Y, Qu Z Z, Ding D D, Wang Z Y, Liu Q L, Liu T Y, Han C, Watanabe K, Taniguchi T, Wu M, Ren Q, Wang X, Hong J, Mao J, Han Z, Liu K, Gan Z, and Lu J 2022 Nat. Commun. 13 6241 | Giant ferroelectric polarization in a bilayer graphene heterostructure
[47] | Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 | Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
[48] | Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-León H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, and Gorbachev R 2022 Nat. Nanotechnol. 17 390 | Interfacial ferroelectricity in marginally twisted 2D semiconductors
[49] | Deb S, Cao W, Raab N, Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O, and Ben S M 2022 Nature 612 465 | Cumulative polarization in conductive interfacial ferroelectrics
[50] | Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, and Jarillo-Herrero P 2020 Nature 588 71 | Unconventional ferroelectricity in moiré heterostructures
[51] | Rogée L, Wang L, Zhang Y, Cai S, Wang P, Chhowalla M, Ji W, and Lau S P 2022 Science 376 973 | Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides
[52] | Vizner S M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, and Ben S M 2021 Science 372 1462 | Interfacial ferroelectricity by van der Waals sliding
[53] | Yasuda K, Wang X, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Science 372 1458 | Stacking-engineered ferroelectricity in bilayer boron nitride
[54] | Klein D R, Xia L Q, Macneill D, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2023 Nat. Nanotechnol. 18 331 | Electrical switching of a bistable moiré superconductor
[55] | Ma C, Yuan S, Cheung P, Watanabe K, Taniguchi T, Zhang F, and Xia F 2022 Nature 604 266 | Intelligent infrared sensing enabled by tunable moiré quantum geometry
[56] | Chen M Y, Chen F Q, Cheng B, Liang S J, and Miao F 2023 J. Semicond. 44 010301 | Moiré heterostructures: highly tunable platforms for quantum simulation and future computing
[57] | Zhu Z Y, Carr S, Ma Q, and Kaxiras E 2022 Phys. Rev. B 106 205134 | Electric field tunable layer polarization in graphene/boron-nitride twisted quadrilayer superlattices
[58] | Zheng Z, Wang X, Zhu Z, Carr S, Devakul T, de la Barrera S, Paul N, Huang Z, Gao A, Zhang Y, Bérubé D, Natasha E K, Watanabe K, Taniguchi T, Fu L, Wang Y, Xu S Y, Kaxiras E, Jarillo-Herrero P, and Ma Q 2023 arXiv:2306.03922 [cond-mat.mes-hall] | Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity
[59] | Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355 | Short-Term Synaptic Plasticity