[1] | Syôzi I 1951 Prog. Theor. Phys. 6 306 | Statistics of Kagome Lattice
[2] | Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647 | Topological kagome magnets and superconductors
[3] | Chen H, Hu B, Ye Y, Yang H, and Gao H J 2022 Chin. Phys. B 31 097405 | Superconductivity and unconventional density waves in vanadium-based kagome materials AV3 Sb5
[4] | Nguyen T and Li M 2022 J. Appl. Phys. 131 060901 | Electronic properties of correlated kagomé metals AV3Sb5 (A = K, Rb, and Cs): A perspective
[5] | Mielke A 1991 J. Phys. A 24 L73 | Ferromagnetic ground states for the Hubbard model on line graphs
[6] | Tanaka A and Ueda H 2003 Phys. Rev. Lett. 90 067204 | Stability of Ferromagnetism in the Hubbard Model on the Kagome Lattice
[7] | Pollmann F, Fulde P, and Shtengel K 2008 Phys. Rev. Lett. 100 136404 | Kinetic Ferromagnetism on a Kagome Lattice
[8] | Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405 | Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model
[9] | Park T, Ye M, and Balents L 2021 Phys. Rev. B 104 035142 | Electronic instabilities of kagome metals: Saddle points and Landau theory
[10] | Yu S L and Li J X 2012 Phys. Rev. B 85 144402 | Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
[11] | Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105 | Sublattice interference in the kagome Hubbard model
[12] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 | Topological insulator on the kagome lattice
[13] | Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Hasan M Z 2020 Nature 583 533 | Quantum-limit Chern topological magnetism in TbMn6Sn6
[14] | Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090 | Evidence for magnetic Weyl fermions in a correlated metal
[15] | Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286 | Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3 Sn2 S2
[16] | Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282 | Magnetic Weyl semimetal phase in a Kagomé crystal
[17] | Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H, and Hasan M Z 2019 Nat. Phys. 15 443 | Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet
[18] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[19] | Subedi A 2022 Phys. Rev. Mater. 6 015001 | Hexagonal-to-base-centered-orthorhombic charge density wave order in kagome metals and
[20] | Miao H, Li H X, Meier W R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z, Tan H, and Yan B 2021 Phys. Rev. B 104 195132 | Geometry of the charge density wave in the kagome metal
[21] | Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353 | Unconventional chiral charge order in kagome superconductor KV3Sb5
[22] | Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122 | Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals ( =K, Rb, Cs)
[23] | Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J, and Miao H 2021 Phys. Rev. X 11 031050 | Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors ( , Cs)
[24] | Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245 | Time-reversal symmetry-breaking charge order in a kagome superconductor
[25] | Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601 | Analysis of Charge Order in the Kagome Metal ( )
[26] | Nie L P, Sun K L, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 604 59 | Charge-density-wave-driven electronic nematicity in a kagome superconductor
[27] | Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, and Chen X H 2021 Nat. Commun. 12 3645 | Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal
[28] | Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y, and Wen H H 2021 Nat. Commun. 12 6727 | Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field
[29] | Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401 | Charge Density Waves and Electronic Properties of Superconducting Kagome Metals
[30] | Wu S F, Ortiz B R, Tan H X, Wilson S D, Yan B H, Birol T, and Blumberg G 2022 Phys. Rev. B 105 155106 | Charge density wave order in the kagome metal
[31] | Kang M G, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Kaxiras E, Wilson S D, Park J H, and Comin R 2022 Nat. Phys. 18 301 | Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5
[32] | Si J G, Lu W J, Sun Y P, Liu P F, and Wang B T 2022 Phys. Rev. B 105 024517 | Charge density wave and pressure-dependent superconductivity in the kagome metal : A first-principles study
[33] | Luo H L, Gao Q, Liu H X, Gu Y H, Wu D S, Yi C J, Jia J J, Wu S L, Luo X Y, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z, and Zhou X J 2022 Nat. Commun. 13 273 | Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5
[34] | Zheng L X, Wu Z M, Yang Y, Nie L P, Shan M, Sun K L, Song D W, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 611 682 | Emergent charge order in pressurized kagome superconductor CsV3Sb5
[35] | Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384 | Chiral flux phase in the Kagome superconductor AV3Sb5
[36] | Jiang K, Wu T, Yin J, Wang Z, Hasan M Z, Wilson S D, Chen X, and Hu J 2022 Natl. Sci. Rev. 10 nwac199 | Kagome superconductors AV3Sb5 (A = K, Rb, Cs)
[37] | Feng X, Zhang Y, Jiang K, and Hu J 2021 Phys. Rev. B 104 165136 | Low-energy effective theory and symmetry classification of flux phases on the kagome lattice
[38] | Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135 | Competing electronic orders on kagome lattices at van Hove filling
[39] | Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 Nature 599 222 | Roton pair density wave in a strong-coupling kagome superconductor
[40] | Ortiz B, Teicher S, Hu Y, Zuo J, Sarte P, Schueller E, Abeykoon A, Krogstad M, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[41] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 | Superconductivity in the kagome metal
[42] | Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216 | Cascade of correlated electron states in the kagome superconductor CsV3Sb5
[43] | Jeong M Y, Yang H J, Kim H S, Kim Y B, Lee S, and Han M J 2022 Phys. Rev. B 105 235145 | Crucial role of out-of-plane Sb orbitals in Van Hove singularity formation and electronic correlations in the superconducting kagome metal
[44] | Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV3 Sb5 Single Crystals
[45] | Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402 | Highly Robust Reentrant Superconductivity in CsV3 Sb5 under Pressure
[46] | Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J, and Zhao Z 2021 Chin. Phys. Lett. 38 057403 | Anisotropic Superconducting Properties of Kagome Metal CsV3 Sb5
[47] | Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z, and Luo J L 2021 Chin. Phys. Lett. 38 077402 | S-Wave Superconductivity in Kagome Metal CsV3 Sb5 Revealed by121/123 Sb NQR and51 V NMR Measurements
[48] | Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802 | High-Temperature Fractional Quantum Hall States
[49] | Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118 | Fractionally charged topological point defects on the kagome lattice
[50] | O'Brien A, Pollmann F, and Fulde P 2010 Phys. Rev. B 81 235115 | Strongly correlated fermions on a kagome lattice
[51] | Ohgushi K, Murakami S, and Nagaosa N 2000 Phys. Rev. B 62 R6065 | Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet
[52] | Liu E K, Sun Y, Kumar N, Muechler L, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[53] | Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A R C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870 | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3 Ge
[54] | Kiyohara N, Tomita T, and Nakatsuji S 2016 Phys. Rev. Appl. 5 064009 | Giant Anomalous Hall Effect in the Chiral Antiferromagnet
[55] | Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, S̆mejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T, and Ali M N 2020 Sci. Adv. 6 eabb6003 | Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3 Sb5
[56] | Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 Phys. Rev. B 104 L041103 | Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal
[57] | Scammell H D, Ingham J, Li T, and Sushkov O P 2023 Nat. Commun. 14 605 | Chiral excitonic order from twofold van Hove singularities in kagome metals
[58] | Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Ghimire M P, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163 | Dirac fermions and flat bands in the ideal kagome metal FeSn
[59] | Xie Y, Chen L, Chen T, Wang Q, Yin Q, Stewart J R, Stone M B, Daemen L L, Feng E, Cao H, Lei H, Yin Z, MacDonald A H, and Dai P 2021 Commun. Phys. 4 240 | Spin excitations in metallic kagome lattice FeSn and CoSn
[60] | Sales B C, Yan J, Meier W R, Christianson A D, Okamoto S, and McGuire M A 2019 Phys. Rev. Mater. 3 114203 | Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn
[61] | Do S H, Kaneko K, Kajimoto R, Kamazawa K, Stone M B, Lin J Y Y, Itoh S, Masuda T, Samolyuk G D, Dagotto E, Meier W R, Sales B C, Miao H, and Christianson A D 2022 Phys. Rev. B 105 L180403 | Damped Dirac magnon in the metallic kagome antiferromagnet FeSn
[62] | Zhang Y F, Ni X S, Datta T, Wang M, Yao D X, and Cao K 2022 Phys. Rev. B 106 184422 | Ab initio study of spin fluctuations in the itinerant kagome magnet FeSn
[63] | Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638 | Massive Dirac fermions in a ferromagnetic kagome metal
[64] | Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, and Zhang Z 2018 Phys. Rev. Lett. 121 096401 | Flatbands and Emergent Ferromagnetic Ordering in Kagome Lattices
[65] | Teng X, Oh J S, Tan H, Chen L, Huang J, Gao B, Yin J X, Chu J H, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Granroth G E, Yan B, Birgeneau R J, Dai P, and Yi M 2023 Nat. Phys. 19 814 | Magnetism and charge density wave order in kagome FeGe
[66] | Zhou H J, Yan S S, Fan D Z, Wang D, and Wan X G 2023 Phys. Rev. B 108 035138 | Magnetic interactions and possible structural distortion in kagome FeGe from first-principles calculations and symmetry analysis
[67] | Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M, and Dai P 2022 Nature 609 490 | Discovery of charge density wave in a kagome lattice antiferromagnet
[68] | Yin J X, Jiang Y X, Teng X, Hossain M S, Mardanya S, Chang T R, Ye Z, Xu G, Denner M M, Neupert T, Lienhard B, Deng H B, Setty C, Si Q, Chang G, Guguchia Z, Gao B, Shumiya N, Zhang Q, Cochran T A, Multer D, Yi M, Dai P, and Hasan M Z 2022 Phys. Rev. Lett. 129 166401 | Discovery of Charge Order and Corresponding Edge State in Kagome Magnet FeGe
[69] | Miao H, Zhang T T, Li H X, Fabbris G, Said A H, Tartaglia R, Yilmaz T, Vescovo E, Yin J X, Murakami S, Feng L X, Jiang K, Wu X L, Wang A F, Okamoto S, Wang Y L, and Lee H N 2023 Nat. Commun. 14 6183 | Signature of spin-phonon coupling driven charge density wave in a kagome magnet
[70] | Shao S, Yin J X, Belopolski I, You J Y, Hou T, Chen H, Jiang Y X, Hossain M S, Yahyavi M, Hsu C H, Feng Y, Bansil A, Hasan M Z, and Chang G 2023 ACS Nano 17 10164 | Intertwining of Magnetism and Charge Ordering in Kagome FeGe
[71] | Chen Z, Wu X, Yin R, Zhang J, Wang S, Li Y, Li M, Wang A, Wang Y, Yan Y J, and Feng D L 2023 arXiv:2302.04490 [cond-mat.str-el] | Charge density wave with strong quantum phase fluctuations in Kagome magnet FeGe
[72] | Setty C, Lane C A, Chen L, Hu H, Zhu J X, and Si Q 2022 arXiv:2203.01930 [cond-mat.str-el] | Electron correlations and charge density wave in the topological kagome metal FeGe
[73] | Wang Y 2023 arXiv:2304.01604 [cond-mat.str-el] | Enhanced Spin-polarization via Partial Ge1-dimerization as the Driving Force of the 2$\times$2$\times$2 CDW in FeGe
[74] | Ohoyama T, Kanematsu K, and Yasukōchi K 1963 J. Phys. Soc. Jpn. 18 589 | A New Intermetallic Compound FeGe
[75] | Beckman O, Carrander K, Lundgren L, and Richardson M 1972 Phys. Scr. 6 151 | Susceptibility Measurements and Magnetic Ordering of Hexagonal FeGe
[76] | Häggsträm L, Ericsson T, Wäppling R, and Karlsson E 1975 Phys. Scr. 11 55 | Mössbauer Study of Hexagonal FeGe
[77] | Gäfvert U, Lundgren L, Westerstrandh B, and Beckman O 1977 J. Phys. Chem. Solids 38 1333 | Crystalline anisotropy energy of uniaxial antiferromagnets evaluated from low field torque data
[78] | Forsyth J B, Wilkinson C, and Gardner P 1978 J. Phys. F 8 2195 | The low-temperature magnetic structure of hexagonal FeGe
[79] | Bernhard J, Lebech B, and Beckman O 1984 J. Phys. F 14 2379 | Neutron diffraction studies of the low-temperature magnetic structure of hexagonal FeGe
[80] | Bernhard J, Lebech B, and Beckman O 1988 J. Phys. F 18 539 | Magnetic phase diagram of hexagonal FeGe determined by neutron diffraction
[81] | Doniach S and Sondheime E H 1998 Green's Functions for Solid State Physicists (Singerpore: World Scientific) | Green's Functions for Solid State Physicists
[82] | Wu X X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Sante D D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T, and Thomale R 2021 Phys. Rev. Lett. 127 177001 | Nature of Unconventional Pairing in the Kagome Superconductors ( )
[83] | Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101 | WIEN2k: An APW+lo program for calculating the properties of solids
[84] | Vosko S H, Wilk L, and Nusair M 1980 Can. J. Phys. 58 1200 | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
[85] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558(R) | Ab initio molecular dynamics for liquid metals
[86] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[87] | Blüchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[88] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[89] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L et al. 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[90] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G et al. 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[91] | Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 | Efficient pseudopotentials for plane-wave calculations
[92] | Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford: Oxford University Press) |
[93] | Tang F and Wan X 2021 Phys. Rev. B 104 085137 | Exhaustive construction of effective models in 1651 magnetic space groups
[94] | Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 | Fermi surface nesting and the origin of charge density waves in metals
[95] | Yi M, Zhang Y, Shen Z X, and Lu D 2017 npj Quantum Mater. 2 57 | Role of the orbital degree of freedom in iron-based superconductors
[96] | Yin Z P, Haule K, and Kotliar G 2011 Nat. Mater. 10 932 | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
[97] | Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57 | Pairing Mechanism in Fe-Based Superconductors
[98] | Hirschfeld P J 2016 C. R. Phys. 17 197 | Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors
[99] | Hirschfeld P J, Korshunov M M, and Mazin I I 2011 Rep. Prog. Phys. 74 124508 | Gap symmetry and structure of Fe-based superconductors
[100] | Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, and Kotliar G 2022 Nature 601 35 | Iron pnictides and chalcogenides: a new paradigm for superconductivity
[101] | Mahan G D 2000 Many-Particle Physics (New York: Springer) | Many-Particle Physics
[102] | Wan X G and Savrasov S Y 2014 Nat. Commun. 5 4144 | Turning a band insulator into an exotic superconductor
[103] | Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039 | Metal-insulator transitions