[1] | Novoselov K S, Geim A K, Morozov S V, and Jiang D 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Fang W S, Huang L, Zaman S, Wang Z, Han Y J, and Xia B Y 2020 Chem. Res. Chin. Univ. 36 611 | Recent Progress on Two-dimensional Electrocatalysis
[3] | Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H, and Guo Z 2020 J. Mater. Chem. C 8 387 | Recent developments in emerging two-dimensional materials and their applications
[4] | Rehman M U, Hua C, and Lu Y 2020 Chin. Phys. B 29 057304 | Topology and ferroelectricity in group-V monolayers*
[5] | Qi L, Ruan S, and Zeng Y J 2021 Adv. Mater. 33 2005098 | Review on Recent Developments in 2D Ferroelectrics: Theories and Applications
[6] | Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, and Prasad P N 2022 Chem. Rev. 122 1127 | Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures
[7] | Wang Y, Mao J, Meng X, Yu L, Deng D, and Bao X 2019 Chem. Rev. 119 1806 | Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications
[8] | Fan F R, Wang R, Zhang H, and Wu W 2021 Chem. Soc. Rev. 50 10983 | Emerging beyond-graphene elemental 2D materials for energy and catalysis applications
[9] | Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K, and Tiwary C S 2019 Mater. Today 27 107 | Magnetism in two-dimensional materials beyond graphene
[10] | Rojaee R and Shahbazian-Yassar R 2020 ACS Nano 14 2628 | Two-Dimensional Materials to Address the Lithium Battery Challenges
[11] | Gao Y Y, Gao M Y, and Lu Y R 2021 Nanoscale 13 19324 | Two-dimensional multiferroics
[12] | Wang C S, You L, Cobden D, and Wang J L 2023 Nat. Mater. 22 542 | Towards two-dimensional van der Waals ferroelectrics
[13] | Padilha J E, Peelaers H, Janotti A, and Van de Walle C G 2014 Phys. Rev. B 90 205420 | Nature and evolution of the band-edge states in : From monolayer to bulk
[14] | Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B J, and Vera-Marun I J 2020 Rev. Mod. Phys. 92 021003 | Colloquium : Spintronics in graphene and other two-dimensional materials
[15] | Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, Huang C, Yang J, Dai L, Zeng H, and Kan E 2022 Phys. Rev. Lett. 128 067601 | Room-Temperature Ferroelectricity in - Multilayers
[16] | Park J W, Jung Y S, Park S H, Choi H J, and Cho Y S 2022 Adv. Opt. Mater. 10 2200898 | High‐Performance Photoresponse in Ferroelectric d1T‐MoTe2 ‐Based Vertical Photodetectors
[17] | Yasuda K, Wang X, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Science 372 1458 | Stacking-engineered ferroelectricity in bilayer boron nitride
[18] | Yuan S G, Luo X, Chan H L, Xiao C C, Dai Y W, Xie M H, and Hao J H 2019 Nat. Commun. 10 1775 | Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit
[19] | Shang J, Shen S, Wang L, Ma Y, Liao T, Gu Y, and Kou L 2022 J. Phys. Chem. Lett. 13 2027 | Stacking-Dependent Interlayer Ferroelectric Coupling and Moiré Domains in a Twisted AgBiP2 Se6 Bilayer
[20] | Hua C Q, Bai H, Zheng Y, Xu Z A, Yang S A, Lu Y, and Wei S H 2021 Chin. Phys. Lett. 38 077501 | Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates
[21] | Ye Q, Shen Y H, and Duan C G 2021 Chin. Phys. Lett. 38 087702 | Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI2 Monolayer
[22] | Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L G, Yang W, Du L J, and Zhang G Y 2023 Chin. Phys. Lett. 40 047303 | Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS2 Moiré Superlattice
[23] | Zhang X L, Lu Y H, and Chen L 2023 Chin. Phys. Lett. 40 067701 | Ferroelectricity in 2D Elemental Materials
[24] | Liu K H, Ma X K, Xu S K, Li Y Y, and Zhao M W 2023 npj Comput. Mater. 9 16 | Tunable sliding ferroelectricity and magnetoelectric coupling in two-dimensional multiferroic MnSe materials
[25] | de la Barrera S C, Cao Q R, Gao Y, Gao Y, Bheemarasetty V S, Yan J Q, Mandrus D G, Zhu W G, Xiao D, and Hunt B M 2021 Nat. Commun. 12 5298 | Direct measurement of ferroelectric polarization in a tunable semimetal
[26] | Hong Y F, Deng J K, Ding X D, Sun J, and Liu J Z 2023 J. Phys. Chem. Lett. 14 3160 | Size Limiting Elemental Ferroelectricity in Bi Nanoribbons: Observation, Mechanism, and Opportunity
[27] | Qian Z, Zhou J, Wang H, and Liu S 2023 npj Comput. Mater. 9 67 | Shift current response in elemental two-dimensional ferroelectrics
[28] | Xiao C C, Wang F, Yang S A, Lu Y, Feng Y P, and Zhang S B 2018 Adv. Funct. Mater. 28 1707383 | Elemental Ferroelectricity and Antiferroelectricity in Group‐V Monolayer
[29] | Zhu Z L, Cai X L, Yi S H, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y, and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101 | Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study
[30] | Deng S Q, Köhler J, and Simon A 2006 Angew. Chem. Int. Ed. 45 599 | Unusual Lone Pairs in Tellurium and Their Relevance for Superconductivity
[31] | Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y, and Wee A T S 2023 Nature 617 67 | Two-dimensional ferroelectricity in a single-element bismuth monolayer
[32] | Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y, and Ji W 2018 Mater. Horiz. 5 521 | Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers
[33] | Liang Z F, Wang Y, Hua C Q, Xiao C C, Chen M G, Jiang Z, Tai R Z, Lu Y H, and Song F 2019 Nanoscale 11 14134 | Electronic structures of ultra-thin tellurium nanoribbons
[34] | Wang C, Zhou X Y, Qiao J S, Zhou L W, Kong X H, Pan Y H, Cheng Z H, Chai Y, and Ji W 2018 Nanoscale 10 22263 | Charge-governed phase manipulation of few-layer tellurium
[35] | Hirayama M, Okugawa R, Ishibashi S, Murakami S, and Miyake T 2015 Phys. Rev. Lett. 114 206401 | Weyl Node and Spin Texture in Trigonal Tellurium and Selenium
[36] | Lin S Q, Li W, Chen Z W, Shen J W, Ge B H, and Pei Y Z 2016 Nat. Commun. 7 10287 | Tellurium as a high-performance elemental thermoelectric
[37] | Liu D, Lin X Q, and Tománek D 2018 Nano Lett. 18 4908 | Microscopic Mechanism of the Helix-to-Layer Transformation in Elemental Group VI Solids
[38] | Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, and Wu W Z 2018 Nat. Electron. 1 228 | Field-effect transistors made from solution-grown two-dimensional tellurene
[39] | Qiao J S, Pan Y H, Yang F, Wang C, Chai Y, and Ji W 2018 Sci. Bull. 63 159 | Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties
[40] | Qiu G, Niu C, Wang Y X, Si M W, Zhang Z C, Wu W Z, and Ye P D 2020 Nat. Nanotechnol. 15 585 | Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene
[41] | Wu M H, Dong S, Yao K L, Liu J M, and Zeng X C 2016 Nano Lett. 16 7309 | Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory
[42] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[43] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[44] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[45] | Klimeš J, Bowler D R, and Michaelides A 2011 Phys. Rev. B 83 195131 | Van der Waals density functionals applied to solids
[46] | Gonze X, Allan D C, and Teter M P 1992 Phys. Rev. Lett. 68 3603 | Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory
[47] | Guo G Y, Yao Y, and Niu Q 2005 Phys. Rev. Lett. 94 226601 | Ab initio Calculation of the Intrinsic Spin Hall Effect in Semiconductors
[48] | Qiao J F, Zhou J Q, Yuan Z, and Zhao W S 2018 Phys. Rev. B 98 214402 | Calculation of intrinsic spin Hall conductivity by Wannier interpolation
[49] | Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442 | Electric polarization as a bulk quantity and its relation to surface charge
[50] | Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901 | A climbing image nudged elastic band method for finding saddle points and minimum energy paths
[51] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 | wannier90: A tool for obtaining maximally-localised Wannier functions
[52] | Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033 | VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
[53] | Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653 | VESTA : a three-dimensional visualization system for electronic and structural analysis
[54] | Tong Q C, Lv J, Gao P Y, and Wang Y C 2019 Chin. Phys. B 28 106105 | The CALYPSO methodology for structure prediction*
[55] | Poleschner H and Seppelt K 2008 Angew. Chem. Int. Ed. 47 6461 | Selenirenium and Tellurirenium Ions
[56] | Dronskowski R and Bloechl P E 1993 J. Phys. Chem. C 97 8617 | Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
[57] | Tan Z, Zhang H, Wu X, Xing J, Zhang Q, and Zhu J 2023 Phys. Rev. Lett. 130 246802 | New High-Performance Piezoelectric: Ferroelectric Carbon-Boron Clathrate
[58] | Liu Q H, Guo Y Z, and Freeman A J 2013 Nano Lett. 13 5264 | Tunable Rashba Effect in Two-Dimensional LaOBiS2 Films: Ultrathin Candidates for Spin Field Effect Transistors
[59] | Gupta S and Yakobson B I 2021 J. Am. Chem. Soc. 143 3503 | What Dictates Rashba Splitting in 2D van der Waals Heterobilayers
[60] | Sheng F, Hua C, Cheng M, Hu J, Sun X, Tao Q, Lu H, Lu Y, Zhong M, Watanabe K, Taniguchi T, Xia Q, Xu Z A, and Zheng Y 2021 Nature 593 56 | Rashba valleys and quantum Hall states in few-layer black arsenic
[61] | Wang T H and Jeng H T 2017 npj Comput. Mater. 3 5 | Wide-range ideal 2D Rashba electron gas with large spin splitting in Bi2Se3/MoTe2 heterostructure
[62] | Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, and Hofmann P 2004 Phys. Rev. Lett. 93 046403 | Strong Spin-Orbit Splitting on Bi Surfaces
[63] | LaShell S, McDougall B A, and Jensen E 1996 Phys. Rev. Lett. 77 3419 | Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy
[64] | Varykhalov A, Marchenko D, Scholz M R, Rienks E D, Kim T K, Bihlmayer G, Sanchez-Barriga J, and Rader O 2012 Phys. Rev. Lett. 108 066804 | Ir(111) Surface State with Giant Rashba Splitting Persists under Graphene in Air
[65] | Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, and Xiao D 2012 Phys. Rev. B 86 165108 | Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study
[66] | Sinova J, Valenzuela S O, Wunderlich J, Back C H, and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 | Spin Hall effects
[67] | Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J, and Jungwirth T 2010 Science 330 1801 | Spin Hall Effect Transistor
[68] | Jungwirth T, Wunderlich J, and Olejník K 2012 Nat. Mater. 11 382 | Spin Hall effect devices
[69] | Lu H Z, Qi Z B, Huang Y Q, Cheng M, Sheng F, Deng Z K, Chen S, Hua C Q, He P M, Lu Y H, and Zheng Y 2023 Phys. Rev. B 107 165419 | Unlocking hidden spins in centrosymmetric transition metal dichalcogenides by vacancy-controlled spin-orbit scattering
[70] | Xiao D, Yao W, and Niu Q 2007 Phys. Rev. Lett. 99 236809 | Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport
[71] | Xiao D, Liu G B, Feng W, Xu X, and Yao W 2012 Phys. Rev. Lett. 108 196802 | Coupled Spin and Valley Physics in Monolayers of and Other Group-VI Dichalcogenides
[72] | Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature 565 337 | Observation of the nonlinear Hall effect under time-reversal-symmetric conditions
[73] | Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 | Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials