[1] | Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H, and Yi H L 2022 Int. J. Extreme Manuf. 4 032002 | Near-field radiative heat transfer in hyperbolic materials
[2] | Rincón-García L, Thompson D, Mittapally R, Agraït N, Meyhofer E, and Reddy P 2022 Phys. Rev. Lett. 129 145901 | Enhancement and Saturation of Near-Field Radiative Heat Transfer in Nanogaps between Metallic Surfaces
[3] | Cuevas J C and García-Vidal F J 2018 ACS Photon. 5 3896 | Radiative Heat Transfer
[4] | Zhu L X, Guo Y, and Fan S H 2018 Phys. Rev. B 97 094302 | Theory of many-body radiative heat transfer without the constraint of reciprocity
[5] | St-Gelais R, Zhu L, Fan S, and Lipson M 2016 Nat. Nanotechnol. 11 515 | Near-field radiative heat transfer between parallel structures in the deep subwavelength regime
[6] | Otey C R, Lau W T, and Fan S 2010 Phys. Rev. Lett. 104 154301 | Thermal Rectification through Vacuum
[7] | Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 | Near-Field Thermal Transistor
[8] | Joulain K, Ezzahri Y, Drevillon J, and Ben-Abdallah P 2015 Appl. Phys. Lett. 106 133505 | Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor
[9] | Hu Y, Liu H, Yang B, Shi K, Antezza M, Wu X, and Sun Y 2023 Phys. Rev. Mater. 7 035201 | High-rectification near-field radiative thermal diode using Weyl semimetals
[10] | Zhang J H, Liu H T, Zhang K H, Cao J C, and Wu X H 2023 Int. J. Heat Mass Transfer 202 123714 | Radiative heat transfer between multilayer hyperbolic materials in both near-field and far-field
[11] | Toyin O R, Ge W, and Gao L 2021 Chin. Phys. Lett. 38 016801 | Photonic Thermal Rectification with Composite Metamaterials
[12] | He M J, Qi H, Ren Y T, Zhao Y J, and Antezza M 2019 Appl. Phys. Lett. 115 263101 | Graphene-based thermal repeater
[13] | Fang J L, Qu L, Zhang Y, and Yi H L 2022 Int. J. Heat Mass Transfer 190 122711 | High enhancement of near-field radiative heat transfer between nanoparticles via the surface modes of the dielectric thin film
[14] | Ben-Abdallah P, Belarouci A, Frechette L, and Biehs S A 2015 Appl. Phys. Lett. 107 053109 | Heat flux splitter for near-field thermal radiation
[15] | Song J L, Lu L, Li B W, Zhang B P, Hu R, Zhou X P, and Cheng Q 2020 Int. J. Heat Mass Transfer 150 119346 | Thermal routing via near-field radiative heat transfer
[16] | Guo C, Zhao B, Huang D, and Fan S 2020 ACS Photon. 7 3257 | Radiative Thermal Router Based on Tunable Magnetic Weyl Semimetals
[17] | Xu G D, Sun J, Mao H M, and Pan T 2018 J. Quant. Spectrosc. Radiat. Transfer 220 140 | Highly efficient near-field thermal rectification between InSb and graphene-coated SiO2
[18] | Feng D D, Yee S K, and Zhang Z M 2021 Appl. Phys. Lett. 119 181111 | Near-field photonic thermal diode based on hBN and InSb films
[19] | Wang K and Gao L 2020 ES Energy & Environ. 7 12 | High-Efficient Photonic Thermal Rectification with Magnetocontrollability
[20] | Ogundare R T, Ge W, and Gao L 2022 Opt. Express 30 18208 | Nonlocal composite metamaterial in calculation of near-field thermal rectification
[21] | Ben-Abdallah P 2016 Phys. Rev. Lett. 116 084301 | Photon Thermal Hall Effect
[22] | Messina R, Ott A, Kathmann C, Biehs S A, and Ben-Abdallah P 2021 Phys. Rev. B 103 115440 | Radiative cooling induced by time-symmetry breaking in periodically driven systems
[23] | Hu Y, Sun Y, Zheng Z, Song J, Shi K, and Wu X 2022 Int. J. Heat Mass Transfer 189 122666 | Rotation-induced significant modulation of near-field radiative heat transfer between hyperbolic nanoparticles
[24] | Ott A, Messina R, Ben-Abdallah P, and Biehs S A 2019 J. Photon. Energy 9 1 | Magnetothermoplasmonics: from theory to applications
[25] | Lee C S, Lee H, and Westervelt R M 2001 Appl. Phys. Lett. 79 3308 | Microelectromagnets for the control of magnetic nanoparticles
[26] | Panina L V, Gurevich A, Beklemisheva A, Omelyanchik A, Levada K, and Rodionova V 2022 Cells 11 950 | Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces
[27] | Liu H T, Shi K Z, Zhou K, Ai Q, Xie M, and Wu X H 2023 Int. J. Heat Mass Transfer 208 124081 | Enhancement and modulation of three-body near-field radiative heat transfer via anisotropic hyperbolic polaritons
[28] | Ben-Abdallah P, Biehs S A, and Joulain K 2011 Phys. Rev. Lett. 107 114301 | Many-Body Radiative Heat Transfer Theory
[29] | Sun Y S, Hu Y, Shi K Z, Zhang J H, Feng D D, and Wu X H 2022 Phys. Scr. 97 095506 | Negative differential thermal conductance between Weyl semimetals nanoparticles through vacuum
[30] | Luo M G, Zhao J M, Liu L H, Guizal B, and Antezza M 2021 Int. J. Heat Mass Transfer 166 120793 | Many-body effective thermal conductivity in phase-change nanoparticle chains due to near-field radiative heat transfer
[31] | Albaladejo S, Gómez-Medina R, Froufe-Pérez L S, Marinchio H, Carminati R, Torrado J F, Armelles G, García-Martín A, and Sáenz J J 2010 Opt. Express 18 3556 | Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle
[32] | Dong J, Zhang W, and Liu L 2021 Appl. Phys. Lett. 119 021104 | Nonreciprocal thermal radiation of nanoparticles via spin-directional coupling with reciprocal surface modes
[33] | Moncada-Villa E and Cuevas J C 2020 Phys. Rev. B 101 085411 | Magnetic field effects in the near-field radiative heat transfer between planar structures
[34] | Moncada-Villa E, Fernández-Hurtado V, García-Vidal F J, García-Martín A, and Cuevas J C 2015 Phys. Rev. B 92 125418 | Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters