[1] | Ashkin A 1970 Phys. Rev. Lett. 24 156 | Acceleration and Trapping of Particles by Radiation Pressure
[2] | Ashkin A, Dziedzic J M, Bjorkholm J E, and Chu S 1986 Opt. Lett. 11 288 | Observation of a single-beam gradient force optical trap for dielectric particles
[3] | Choudhary D, Mossa A, Jadhav M, and Cecconi C 2019 Biomolecules 9 23 | Bio-Molecular Applications of Recent Developments in Optical Tweezers
[4] | Baker J E, Badman R P, and Wang M D 2018 WIREs Nanomed. Nanobiotechnol. 10 e1477 | Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays
[5] | Estéve J 2013 Nat. Nanotechnol. 8 317 | Trapped by nanostructures
[6] | Hu J, Bandyopadhyay S, Liu Y, and Shao L 2021 Front. Phys. 8 586087 | A Review on Metasurface: From Principle to Smart Metadevices
[7] | Yuan Q, Ge Q, Chen L, Zhang Y, Yang Y, Cao X, Wang S, Zhu S, and Wang Z 2023 Nanophotonics 12 2295 | Recent advanced applications of metasurfaces in multi-dimensions
[8] | Kazanskiy N L, Khonina S N, and Butt M A 2022 Nanomaterials 13 118 | Recent Development in Metasurfaces: A Focus on Sensing Applications
[9] | Li A B, Singh S, and Sievenpiper D 2018 Nanophotonics 7 989 | Metasurfaces and their applications
[10] | Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, and Cummer S A 2014 Nat. Commun. 5 5553 | Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface
[11] | Yu N F and Capasso F 2014 Nat. Mater. 13 139 | Flat optics with designer metasurfaces
[12] | Yang J Y, Gurung S, Bej S, Ni P, and Howard L H W 2022 Rep. Prog. Phys. 85 036101 | Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications
[13] | Wang W, Yang Q, He S, Shi Y, Liu X, Sun J, Guo K, Wang L, and Guo Z 2021 Opt. Express 29 43270 | Multiplexed multi-focal and multi-dimensional SHE (spin Hall effect) metalens
[14] | Jin Z W, Janoschka D, Deng J H, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu H F M, and Qiu C W 2021 eLight 1 5 | Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum
[15] | Wang W, Guo C, Zhao Z, Li J, and Shi Y 2020 Results Phys. 17 103033 | Polarization multiplexing and bifocal optical vortex metalens
[16] | Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, and Tsai D P 2021 Nanomaterials 11 1730 | Cubic-Phase Metasurface for Three-Dimensional Optical Manipulation
[17] | Markovich H, Shishkin I I, Hendler N, and Ginzburg P 2018 Nano Lett. 18 5024 | Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens
[18] | Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, and Chattham N 2019 Crystals 9 515 | Miniaturized Metalens Based Optical Tweezers on Liquid Crystal Droplets for Lab-on-a-Chip Optical Motors
[19] | Wang X Y, Dai Y M, Zhang Y Q, Min C J, and Yuan X C 2018 ACS Photon. 5 2945 | Plasmonic Manipulation of Targeted Metallic Particles by Polarization-Sensitive Metalens
[20] | Peng M, Luo H, Zhang Z J, Kuang T F, Chen D B, Bai W, Chen Z J, Yang J B, and Xiao G Z 2021 Nanomaterials 11 3376 | Optical Pulling Using Chiral Metalens as a Photonic Probe
[21] | Ng J, Lin Z, and Chan C T 2010 Phys. Rev. Lett. 104 103601 | Theory of Optical Trapping by an Optical Vortex Beam
[22] | Mei S T, Huang K, Zhang T H, Mehmood M Q, Liu H, Lim C T, Teng J H, and Qiu C W 2016 Appl. Phys. Lett. 109 191107 | Evanescent vortex: Optical subwavelength spanner
[23] | Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901 | Structure of Optical Vortices
[24] | Ruffner D B and Grier D G 2012 Phys. Rev. Lett. 108 173602 | Optical Forces and Torques in Nonuniform Beams of Light
[25] | Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, and Maragó O M 2009 ACS Nano 3 3077 | Rotation Detection in Light-Driven Nanorotors
[26] | Friese M E J, Nieminen T A, Heckenberg N R, and Rubinsztein-Dunlop H 1998 Nature 394 348 | Optical alignment and spinning of laser-trapped microscopic particles
[27] | Zhao C L and Cai Y J 2011 Opt. Lett. 36 2251 | Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam
[28] | Mahmood N, Kim J, Naveed M A, Kim Y, Seong J, Kim S, Badloe T, Zubair M, Mehmood M Q, Massoud Y, and Rho J 2023 Nano Lett. 23 1195 | Ultraviolet–Visible Multifunctional Vortex Metaplates by Breaking Conventional Rotational Symmetry
[29] | Shen Z, Xiang Z, Wang Z, Shen Y, and Zhang B 2021 Appl. Opt. 60 4820 | Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens
[30] | Zheng C L, Li J, Wang G C, Wang S L, Li J T, Zhao H L, Zang H P, Zhang Y, Zhang Y T, and Yao J Q 2021 Nanoscale 13 5809 | Fine manipulation of terahertz waves via all-silicon metasurfaces with an independent amplitude and phase
[31] | Ma Y B, Rui G H, Gu B, and Cui Y P 2017 Sci. Rep. 7 14611 | Trapping and manipulation of nanoparticles using multifocal optical vortex metalens
[32] | Li T Y, Xu X H, Fu B Y, Wang S M, Li B J, Wang Z L, and Zhu S N 2021 Photon. Res. 9 1062 | Integrating the optical tweezers and spanner onto an individual single-layer metasurface
[33] | Qiao Z, Gong C, Liao Y, Wang C, Chan K K, Zhu S, Kim M, and Chen Y C 2022 Nano Lett. 22 1425 | Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser
[34] | Chen W T, Zhu A Y, and Capasso F 2020 Nat. Rev. Mater. 5 604 | Flat optics with dispersion-engineered metasurfaces
[35] | Aieta F, Kats M A, Genevet P, and Capasso F 2015 Science 347 1342 | Multiwavelength achromatic metasurfaces by dispersive phase compensation
[36] | Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, and Capasso F 2018 Nat. Nanotechnol. 13 220 | A broadband achromatic metalens for focusing and imaging in the visible
[37] | Svoboda K and Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247 | Biological Applications of Optical Forces
[38] | Wang S M, Wu P C, Su V C, Lai Y C, Hung C C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, and Tsai D P 2017 Nat. Commun. 8 187 | Broadband achromatic optical metasurface devices
[39] | Wang S M, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, and Tsai D P 2018 Nat. Nanotechnol. 13 227 | A broadband achromatic metalens in the visible
[40] | Zhan T, Xiong J H, Lee Y H, and Wu S T 2018 Opt. Express 26 35026 | Polarization-independent Pancharatnam-Berry phase lens system
[41] | Arbabi A, Horie Y, Bagheri M, and Faraon A 2015 Nat. Nanotechnol. 10 937 | Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
[42] | Kruk S, Hopkins B, Kravchenko I I, Miroshnichenko A, Neshev D N, and Kivshar Y S 2016 APL Photon. 1 030801 | Invited Article: Broadband highly efficient dielectric metadevices for polarization control
[43] | Novotny L, Bian R X, and Xie X S 1997 Phys. Rev. Lett. 79 645 | Theory of Nanometric Optical Tweezers
[44] | Yang A H J, Lerdsuchatawanich T, and Erickson D 2009 Nano Lett. 9 1182 | Forces and Transport Velocities for a Particle in a Slot Waveguide
[45] | Juan M L, Righini M, and Quidant R 2011 Nat. Photon. 5 349 | Plasmon nano-optical tweezers