[1] | Sansone G, Calegari F, and Nisoli M 2012 IEEE J. Sel. Top. Quantum Electron. 18 507 | Attosecond Technology and Science
[2] | Krausz F and Stockman M I 2014 Nat. Photonics 8 205 | Attosecond metrology: from electron capture to future signal processing
[3] | Krausz F 2016 Phys. Scr. 91 063011 | The birth of attosecond physics and its coming of age
[4] | Zhao J, Liu J, Wang X, Yuan J, and Zhao Z 2022 Chin. Phys. Lett. 39 123201 | Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization
[5] | Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891 | Tailoring a 67 attosecond pulse through advantageous phase-mismatch
[6] | Wang X W, Wang L, Xiao F, Zhang D W, Lue Z, Yuan J, Zhao Z, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 | Generation of 88 as Isolated Attosecond Pulses with Double Optical Gating*
[7] | Yang Y D, Mainz R E, Rossi G M, Scheiba F, Silva-Toledo M A, Keathley P D, Cirmi G, and Kärtner F X 2021 Nat. Commun. 12 6641 | Strong-field coherent control of isolated attosecond pulse generation
[8] | Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H, and Yang W F 2021 Chin. Phys. Lett. 38 063201 | Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission
[9] | Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 | Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection
[10] | Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202 | Generation of Intense Sub-10 fs Pulses at 385nm
[11] | Yin Y C, Li J, Ren X M, Zhao K, Wu Y, Cunningham E, and Chang Z H 2016 Opt. Lett. 41 1142 | High-efficiency optical parametric chirped-pulse amplifier in BiB_3O_6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 17 μm
[12] | Ren X M, Mach L H, Yin Y C, Wang Y, and Chang Z H 2018 Opt. Lett. 43 3381 | Generation of 1 kHz, 23 mJ, 88 fs, 25 μm pulses from a Cr2+ :ZnSe chirped pulse amplifier
[13] | Wu Y, Zhou F, Larsen E W, Zhuang F, Yin Y, and Chang Z 2020 Sci. Rep. 10 7775 | Generation of few-cycle multi-millijoule 2.5 μm pulses from a single-stage Cr2+:ZnSe amplifier
[14] | Gu X B, Liu J S, Yuan P, Tu X H, Zhang D F, Wang J, Xie G Q, and Ma J Q 2022 Opt. Lett. 47 5244 | Efficient generation of mid-infrared few-cycle pulses by the intrapulse difference-frequency generation in YCOB
[15] | Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287 | Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers
[16] | Chen M C, Mancuso C, Hernández-García C, Dollar F, Galloway B, Popmintchev D, Huang P C, Walker B, Plaja L, Jaroń-Becker A A, Becker A, Murnane M M, Kapteyn H C, and Popmintchev T 2014 Proc. Natl. Acad. Sci. USA 111 E2361 | Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers
[17] | Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, and Chang Z H 2017 Nat. Commun. 8 186 | Crossref OpenURL Resolver
[18] | Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, and Wörner H J 2017 Opt. Express 25 27506 | Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver
[19] | Frolov M V, Manakov N L, Xiong W H, Peng L Y, Burgdörfer J, and Starace A F 2015 Phys. Rev. A 92 023409 | Scaling laws for high-order-harmonic generation with midinfrared laser pulses
[20] | Emelina A S, Emelin M Y, and Ryabikin M Y 2019 J. Opt. Soc. Am. B 36 3236 | Wavelength scaling laws for high-order harmonic yield from atoms driven by mid- and long-wave infrared laser fields
[21] | Arpin P, Popmintchev T, Wagner N L, Lytle A L, Cohen O, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 103 143901 | Enhanced High Harmonic Generation from Multiply Ionized Argon above 500 eV through Laser Pulse Self-Compression
[22] | Gao J x, Wu J q, Lou Z Y, Yang F, Qian J Y, Peng Y J, Leng Y X, Zheng Y H, Zeng Z N, and Li R X 2022 Optica 9 1003 | High-order harmonic generation in an x-ray range from laser-induced multivalent ions of noble gas
[23] | Oguri K, Mashiko H, Ogawa T, Hanada Y, Nakano H, and Gotoh H 2018 Appl. Phys. Lett. 112 181105 | Sub-50-as isolated extreme ultraviolet continua generated by 1.6-cycle near-infrared pulse combined with double optical gating scheme
[24] | Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S, and Chang Z 2009 Opt. Lett. 34 3337 | Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time
[25] | Mashiko H, Oguri K, Sogawa T, Mashiko H, Oguri K, and Sogawa T 2009 Appl. Phys. Lett. 102 171111 | Attosecond pulse generation in carbon K-edge region (284 eV) with sub-250 μ J driving laser using generalized double optical gating method
[26] | Ko D H, Kim K T, and Nam C H 2012 J. Phys. B 45 074015 | Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses
[27] | Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Phys. Rev. A 69 051805 | Single pulse generation from chirp-compensated harmonic radiation using material dispersion
[28] | Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Appl. Phys. B 79 563 | Compression of harmonic pulses by using material dispersion
[29] | Chang Z H 2018 Opt. Express 26 33238 | Attosecond chirp compensation in water window by plasma dispersion
[30] | Chang Z H 2019 OSA Continuum 2 314 | Compensating chirp of attosecond X-ray pulses by a neutral hydrogen gas
[31] | Henke B L, Gullikson E M, and Davis J C 1993 At. Data Nucl. Data Tables 54 181 | X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
[32] | Han S, Zhao K, and Chang Z 2022 Sensors 22 7513 | Monitoring Argon L-Shell Auger Decay Using 250-eV Attosecond X-ray Pulses
[33] | Corkum P B, Burnett N H, and Ivanov M Y 1994 Opt. Lett. 19 1870 | Subfemtosecond pulses
[34] | Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G, and Nisoli M 2006 Nat. Phys. 2 319 | Controlling attosecond electron dynamics by phase-stabilized polarization gating
[35] | Chang Z H 2004 Phys. Rev. A 70 043802 | Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau
[36] | Strelkov V, Zair A, Tcherbakoff O, Lopez-Martens R, Cormier E, Mevel E, and Constant E 2004 Appl. Phys. B 78 879 | Generation of attosecond pulses with ellipticity-modulated fundamental
[37] | Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G, and Chang Z 2012 Phys. Rev. A 86 011401 | Dependence of high-order-harmonic-generation yield on driving-laser ellipticity
[38] | Wang X W, Chini M, Cheng Y, Wu Y, Tong X M, and Chang Z H 2013 Phys. Rev. A 87 063413 | Subcycle laser control and quantum interferences in attosecond photoabsorption of neon
[39] | Hermann M R and Fleck J A J 1988 Phys. Rev. A 38 6000 | Split-operator spectral method for solving the time-dependent Schrödinger equation in spherical coordinates
[40] | Tong X M and Chu S I 1997 Chem. Phys. 217 119 | Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method