[1] | Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley Interscience) |
[2] | Chen F F 1974 Introduction to Plasma Physics and Controlled Fusion (Switzerland: Springer) |
[3] | Zheng B C, Fu Y Y, Wang K L, Schuelke T, and Fan Q H 2021 Plasma Sources Sci. Technol. 30 035019 | Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target
[4] | Huang C W, Chen Y C, and Nishimura Y 2015 IEEE Trans. Plasma Sci. 43 675 | Particle-in-Cell Simulation of Plasma Sheath Dynamics With Kinetic Ions
[5] | Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, and Chu P K 2019 J. Appl. Phys. 125 063302 | Hollow cathode effect modified time-dependent global model and high-power impulse magnetron sputtering discharge and transport in cylindrical cathode
[6] | Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201 | Transformation Plasma Physics
[7] | Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218 | Diffusion metamaterials
[8] | Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, and Huang J P 2023 Rev. Mod. Phys. (in press) |
[9] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | Colloquium : Topological insulators
[10] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[11] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 | Quantum Spin Hall Effect in Graphene
[12] | König M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, and Zhang S C 2007 Science 318 766 | Quantum Spin Hall Insulator State in HgTe Quantum Wells
[13] | Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 | Weyl and Dirac semimetals in three-dimensional solids
[14] | Lu L, Joannopoulos J D, and Soljačić M 2014 Nat. Photonics 8 821 | Topological photonics
[15] | Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006 | Topological photonics
[16] | Cao J H, Kavokin A V, and Nalitov A V 2022 Prog. Electromagn. Res. 173 141 | TAMM STATES AND GAP TOPOLOGICAL NUMBERS IN PHOTONIC CRYSTALS (INVITED PAPER)
[17] | Xue H R, Yang Y H, and Zhang B L 2022 Nat. Rev. Mater. 7 974 | Topological acoustics
[18] | Tsang L, Liao T H, and Tan S R 2021 Prog. Electromagn. Res. 171 137 | CALCULATIONS OF BANDS AND BAND FIELD SOLUTIONS IN TOPOLOGICAL ACOUSTICS USING THE BROADBAND GREEN'S FUNCTION-KKR-MULTIPLE SCATTERING METHOD
[19] | Jia D, Wang Y, Ge Y, Yuan S Q, and Sun H X 2021 Prog. Electromagn. Res. 172 13 | TUNABLE TOPOLOGICAL REFRACTIONS IN VALLEY SONIC CRYSTALS WITH TRIPLE VALLEY HALL PHASE TRANSITIONS (INVITED PAPER)
[20] | Zhang C X, Li T J, Xu L J, and Huang J P 2023 Chin. Phys. Lett. 40 054401 | Dust-Induced Regulation of Thermal Radiation in Water Droplets
[21] | Yin H Y and Fan C Z 2023 Chin. Phys. Lett. 40 077801 | Ultra-Broadband Thermal Emitter for Daytime Radiative Cooling with Metal-Insulator-Metal Metamaterials
[22] | He Z G, Yuan K, Xiong G H, and Wang J 2023 Chin. Phys. Lett. 40 104402 | Inverse Design and Experimental Verification of Metamaterials for Thermal Illusion Using Genetic Algorithms
[23] | Wang Y, Han T C, Liang D F, and Deng L J 2023 Chin. Phys. Lett. 40 104101 | Multifunctional Composite Material with Efficient Microwave Absorption and Ultra-High Thermal Conductivity
[24] | Lou Q and Xia M G 2023 Chin. Phys. Lett. 40 094401 | Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial
[25] | Li Y and Li J X 2021 Chin. Phys. Lett. 38 030501 | Advection and Thermal Diode
[26] | Ju R, Xu G Q, Xu L J, Qi M H, Wang D, Cao P C, Xi R, Shou Y F, Chen H S, Qiu C W, and Li Y 2023 Adv. Mater. 35 2209123 | Convective Thermal Metamaterials: Exploring High‐Efficiency, Directional, and Wave‐Like Heat Transfer
[27] | Liu Z F, Xu L J, and Huang J P 2022 arXiv:2206.09837 [physics.app-ph] | Higher-Dimensional Topological Insulators in Pure Diffusion Systems
[28] | Liu Z F 2023 arXiv:2309.09681 [physics.app-ph] | Non-Hermitian physics and topological phenomena in convective thermal metamaterials
[29] | Xu G Q, Li Y, Li W, Fan S H, and Qiu C W 2021 Phys. Rev. Lett. 127 105901 | Configurable Phase Transitions in a Topological Thermal Material
[30] | Xu G Q, Yang Y H, Zhou X, Chen H S, Alù A, and Qiu C W 2022 Nat. Phys. 18 450 | Diffusive topological transport in spatiotemporal thermal lattices
[31] | Xu G Q, Zhou X, Yang S H, Wu J, and Qiu C W 2023 Nat. Commun. 14 3252 | Observation of bulk quadrupole in topological heat transport
[32] | Xu L J and Huang J P 2021 Europhys. Lett. 134 60001 | Robust one-way edge state in convection-diffusion systems
[33] | Xu L J, Wang J, Dai G L, Yang S, Yang F B, Wang G, and Huang J P 2021 Int. J. Heat Mass Transfer 165 120659 | Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection-conduction
[34] | Parker J B, Burby J W, Marston J B, and Tobias S M 2020 Phys. Rev. Res. 2 033425 | Nontrivial topology in the continuous spectrum of a magnetized plasma
[35] | Parker J B, Burby J W, Marston J B, Tobias S M, and Zhu Z Y 2020 Phys. Rev. Lett. 124 195001 | Topological Gaseous Plasmon Polariton in Realistic Plasma
[36] | Fu Y C and Qin H 2021 Nat. Commun. 12 3924 | Topological phases and bulk-edge correspondence of magnetized cold plasmas
[37] | Gao W L, Yang B, Lawrence M, Fang F Z, Beri B, and Zhang S 2016 Nat. Commun. 7 12435 | Photonic Weyl degeneracies in magnetized plasma
[38] | Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alù A, Fan S H, and Qiu C W 2019 Science 364 170 | Anti–parity-time symmetry in diffusive systems
[39] | Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, and Qiu C W 2021 Prog. Electromagn. Res. 171 1 | NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW)
[40] | Cao P C, Li Y, Peng Y G, Qi M H, Huang W X, Li P Q, and Zhu X F 2021 Commun. Phys. 4 230 | Diffusive skin effect and topological heat funneling
[41] | Huang Q K L, Liu Y K, Cao P C, Zhu X F, and Li Y 2023 Chin. Phys. Lett. 40 106601 | Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect
[42] | Hu B L, Zhang Z W, Yue Z C, Liao D W, Liu Y M, Zhang H X, Cheng Y, Liu X J, and Christensen J 2023 Phys. Rev. Lett. 131 066601 | Anti-Parity-Time Symmetry in a Su-Schrieffer-Heeger Sonic Lattice
[43] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[44] | Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801 | Topological Origin of Non-Hermitian Skin Effects
[45] | Yan Q H, Chen H S, and Yang Y H 2021 Prog. Electromagn. Res. 172 33 | NON-HERMITIAN SKIN EFFECT AND DELOCALIZED EDGE STATES IN PHOTONIC CRYSTALS WITH ANOMALOUS PARITY-TIME SYMMETRY
[46] | Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570 | Localization Transitions in Non-Hermitian Quantum Mechanics
[47] | Cao P C, Peng Y G, Li Y, and Zhu X F 2022 Chin. Phys. Lett. 39 057801 | Phase-Locking Diffusive Skin Effect
[48] | Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133 |
[49] | Harper P G 1955 Proc. Phys. Soc. Sect. A 68 874 | Single Band Motion of Conduction Electrons in a Uniform Magnetic Field
[50] | Liu Z F and Huang J P 2022 arXiv:2208.06765 [physics.app-ph] | Non-Hermitian Diffusive Quasicrystal
[51] | Longhi S 2019 Phys. Rev. Lett. 122 237601 | Topological Phase Transition in non-Hermitian Quasicrystals
[52] | Longhi S 2019 Phys. Rev. B 100 125157 | Metal-insulator phase transition in a non-Hermitian Aubry-André-Harper model
[53] | Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403 | Non-Hermitian Topological Sensors
[54] | Jin P, Xu L J, Xu G Q, Li J X, Qiu C W, and Huang J P 2023 Adv. Mater. (in press) | Deep Learning‐Assisted Active Metamaterials with Heat‐Enhanced Thermal Transport