Inner product $8\langle\alpha |\widetilde{\alpha}\rangle$ | Outcomes of Bell-state measurement | |||
---|---|---|---|---|
$\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi+\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}+i\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_4C_3$ | $A_2B_4C_3$ | ||
$-\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi-\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}-i\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_1C_2$ | $A_2B_1C_2$ | ||
$-\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi-i\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_3C_3$ | $A_2B_3C_3$ | ||
$\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi+i\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_2C_2$ | $A_2B_2C_2$ | ||
$-\sin\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}+\cos\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi$ | $A_3B_4C_3$ | $A_1B_1C_2$ | ||
$\sin\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}-\cos\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\cos\varphi$ | $A_3B_1C_2$ | $A_1B_4C_3$ | ||
$-\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}-\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\cos\varphi$ | $A_3B_4C_2$ | $A_3B_1C_3$ | ||
$\sin\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}+\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\cos\varphi$ | $A_1B_4C_2$ | $A_1B_1C_3$ | ||
$-\cos\theta_{\scriptscriptstyle{\rm C}}-i\cos\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_3B_3C_3$ | $A_1B_2C_2$ | ||
$\cos\theta_{\scriptscriptstyle{\rm C}}+i\cos\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_3B_2C_2$ | $A_1B_3C_3$ | ||
$-\sin\theta_{\scriptscriptstyle{\rm C}}+i\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_3B_3C_2$ | $A_3B_2C_3$ | ||
$\sin\theta_{\scriptscriptstyle{\rm C}}-i\cos\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_1B_3C_2$ | $A_1B_2C_3$ | ||
$-\sin\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\cos\varphi+\cos\vartheta\sin\theta_{\scriptscriptstyle{\rm C}}-i\cos\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_4C_2$ | $A_2B_4C_2$ | $A_4B_1C_3$ | $A_2B_1C_3$ |
$\cos\theta_{\scriptscriptstyle{\rm C}}\cos\varphi+i\sin\vartheta\cos\theta_{\scriptscriptstyle{\rm C}}\sin\varphi$ | $A_4B_3C_2$ | $A_2B_3C_2$ | $A_4B_2C_3$ | $A_2B_2C_3$ |
Inner product $8\langle\alpha |\widetilde{\alpha}\rangle $ | Outcomes of Bell-state measurement | |||
---|---|---|---|---|
$-\cos\varphi-i\sin\vartheta\sin\varphi$ | $A_4B_4C_1$ | $A_2B_4C_1$ | ||
$\cos\varphi+i\sin\vartheta\sin\varphi$ | $A_4B_1C_4$ | $A_2B_1C_4$ | ||
$\sin\vartheta\cos\varphi+i\sin\varphi$ | $A_4B_3C_1$ | $A_2B_3C_1$ | ||
$-\sin\vartheta\cos\varphi-i\sin\varphi$ | $A_4B_2C_4$ | $A_2B_2C_4$ | ||
$-i\cos\vartheta\sin\varphi$ | $A_3B_4C_1$ | $A_1B_1C_4$ | ||
$i\cos\vartheta\sin\varphi$ | $A_3B_1C_4$ | $A_1B_4C_1$ | ||
$\cos\vartheta\cos\varphi$ | $A_3B_3C_1$ | $A_1B_2C_4$ | ||
$-\cos\vartheta\cos\varphi$ | $A_3B_2C_4$ | $A_1B_3C_1$ | ||
$-\sin\vartheta$ | $A_1B_3C_4$ | $A_1B_2C_1$ | ||
$\sin\vartheta$ | $A_3B_3C_4$ | $A_3B_2C_1$ | ||
$-\cos\vartheta$ | $A_4B_3C_4$ | $A_4B_2C_1$ | $A_2B_3C_4$ | $A_2B_2C_1$ |
Inner product $8\langle\alpha |\widetilde{\alpha}\rangle$ | Outcomes of Bell-state measurement | |||
---|---|---|---|---|
$1$ | $A_3B_4C_4$ | $A_3B_1C_1$ | ||
$-1$ | $A_1B_4C_4$ | $A_1B_1C_1$ | ||
$0$ | $A_4B_4C_4$ | $A_4B_1C_1$ | $A_2B_4C_4$ | $A_2B_1C_1$ |
Inner product $8\langle\alpha|\widetilde{\alpha}\rangle$ | Outcomes of Bell-state measurement |
---|---|
$\cos \phi_{\scriptscriptstyle{\rm C}}-i\sin\vartheta\sin\phi_{\scriptscriptstyle{\rm C}}$ | $A_3B_4C_4$ |
$-\cos \phi_{\scriptscriptstyle{\rm C}}+i\sin\vartheta\sin\phi_{\scriptscriptstyle{\rm C}}$ | $A_1B_4C_4$ |
$i\cos\vartheta\sin\phi_{\scriptscriptstyle{\rm C}}$ | $A_2B_4C_4$ $A_4B_4C_4$ |
Inner product $8\langle\alpha|\widetilde{\alpha}\rangle$ | Outcomes of Bell-state measurement |
---|---|
$1$ | $A_3B_1C_1$ |
$-1$ | $A_1B_1C_1$ |
$0$ | $A_4B_1C_1$ $A_2B_1C_1$ |
Outcomes $A_i B_j C_k$ | $64\,F(\theta'_{\scriptscriptstyle{\rm A}}, \phi'_{\scriptscriptstyle{\rm A}}, \varDelta)$ |
---|---|
$A_1B_1C_1 \quad A_3B_1C_1$ $A_1B_4C_4 \quad A_3B_4C_4$ | $1-2\varDelta$ |
$A_2B_1C_1 \quad A_4B_1C_1$ $A_2B_4C_4 \quad A_4B_4C_4$ | $2\varDelta$ |
$A_1B_2C_1 \quad A_3B_2C_1$ $A_1B_3C_4 \quad A_3B_3C_4$ | $\sin^2 \theta_{\scriptscriptstyle{\rm A}}^\prime +2\varDelta\cos(2\theta_{\scriptscriptstyle{\rm A}'})$ |
$A_2B_2C_1 \quad A_4B_2C_1$ $A_2B_3C_4 \quad A_4B_3C_4$ | $\cos^2 \theta_{\scriptscriptstyle{\rm A}}^\prime -2\varDelta\cos(2\theta_{\scriptscriptstyle{\rm A}'})$ |
$A_1B_3C_1 \quad A_3B_3C_1$ $A_1B_2C_4 \quad A_3B_2C_4$ | $\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime +2\varDelta[1-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime]$ |
$A_2B_3C_1 \quad A_4B_3C_1$ $A_2B_2C_4 \quad A_4B_2C_4$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime +2\varDelta[-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\cos(2\phi_{\scriptscriptstyle{\rm A}}')]$ |
$A_1B_4C_1 \quad A_3B_4C_1$ $A_1B_1C_4 \quad A_3B_1C_4$ | $\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime +2\varDelta(1-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime)$ |
$A_2B_4C_1 \quad A_4B_4C_1$ $A_2B_1C_4 \quad A_4B_1C_4$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime +2\varDelta[-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime-\cos(2\phi_{\scriptscriptstyle{\rm A}}')]$ |
$A_1B_1C_2 \quad A_3B_1C_2$ $A_1B_4C_3 \quad A_3B_4C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime \cos^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime -\frac{1}{2}\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[1-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime \cos^2\theta_{\scriptscriptstyle{\rm C}}-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime]$ |
$A_2B_1C_2 \quad A_4B_1C_2$ $A_2B_4C_3 \quad A_4B_4C_3$ | $\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime \cos^2\theta_{\scriptscriptstyle{\rm C}}+\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime +\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\frac{1}{2}\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[1-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime \cos^2\theta_{\scriptscriptstyle{\rm C}}-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime-2\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime-\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime]$ |
$A_1B_2C_2 \quad A_3B_2C_2$ $A_1B_3C_3 \quad A_3B_3C_3$ | $\cos^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime-\cos(2\theta_{\scriptscriptstyle{\rm C}})]$ |
$A_2B_2C_2 \quad A_4B_2C_2$ $A_2B_3C_3 \quad A_4B_3C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime +\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime $ $+2\varDelta(1-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime -2\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime)$ |
$A_1B_3C_2 \quad A_3B_3C_2$ $A_1B_2C_3 \quad A_3B_2C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\cos(2\theta_{\scriptscriptstyle{\rm C}})]$ |
$A_2B_3C_2 \quad A_4B_3C_2$ $A_2B_2C_3 \quad A_4B_2C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime +\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta(1-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime -2\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime)$ |
$A_1B_4C_2 \quad A_3B_4C_2$ $A_1B_1C_3 \quad A_3B_1C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime \sin^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime +\frac{1}{2}\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[1-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime \sin^2\theta_{\scriptscriptstyle{\rm C}}-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime -\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime]$ |
$A_2B_4C_2 \quad A_4B_4C_2$ $A_2B_1C_3 \quad A_4B_1C_3$ | $\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}+\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime-\frac{1}{2}\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime$ $+2\varDelta[1-2\cos^2\theta_{\scriptscriptstyle{\rm A}}^\prime\sin^2\theta_{\scriptscriptstyle{\rm C}}-2\sin^2\theta_{\scriptscriptstyle{\rm A}}^\prime\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\phi_{\scriptscriptstyle{\rm A}}^\prime-2\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\phi_{\scriptscriptstyle{\rm A}}^\prime+\sin(2\theta_{\scriptscriptstyle{\rm A}}')\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\phi_{\scriptscriptstyle{\rm A}}^\prime]$ |
Outcomes $A_i B_j C_k$ | Measured fidelity $64f(\vartheta,\varphi)$ | Accuracy estimation $g(\delta\vartheta,\delta\varphi,\varDelta)=0$ |
---|---|---|
$A_1B_2C_1 \quad A_3B_2C_1$ $A_1B_3C_4 \quad A_3B_3C_4$ | $\sin^2 \vartheta $ | $\delta\vartheta\sin(2\vartheta)=-2\varDelta\cos(2\vartheta)$ |
$A_2B_2C_1 \quad A_4B_2C_1$ $A_2B_3C_4 \quad A_4B_3C_4$ | $\cos^2 \vartheta $ | |
$A_1B_3C_1 \quad A_3B_3C_1$ $A_1B_2C_4 \quad A_3B_2C_4$ | $\cos^2\vartheta\cos^2\varphi $ | $\delta\vartheta\sin(2\vartheta)\cos^2\varphi+\delta\varphi\cos^2\vartheta\sin(2\varphi) =\varDelta(2-4\cos^2\vartheta\cos^2\varphi)$ |
$A_2B_3C_1 \quad A_4B_3C_1$ $A_2B_2C_4 \quad A_4B_2C_4$ | $\sin^2\vartheta\cos^2\varphi+\sin^2\varphi$ | |
$A_1B_4C_1 \quad A_3B_4C_1$ $A_1B_1C_4 \quad A_3B_1C_4$ | $\cos^2\vartheta\sin^2\varphi $ | $\delta\vartheta\sin(2\vartheta)\sin^2\varphi-\delta\varphi\cos^2\vartheta\sin(2\varphi) =\varDelta(2-4\cos^2\vartheta\sin^2\varphi)$ |
$A_2B_4C_1 \quad A_4B_4C_1$ $A_2B_1C_4 \quad A_4B_1C_4$ | $\sin^2\vartheta\sin^2\varphi+\cos^2\varphi$ | |
$A_1B_1C_2 \quad A_3B_1C_2$ $A_1B_4C_3 \quad A_3B_4C_3$ | $\sin^2\vartheta \cos^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ $-\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi$ | $\delta\vartheta[-\sin(2\vartheta)\cos^2\theta_{\scriptscriptstyle{\rm C}}+\sin(2\vartheta)\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi +\cos(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi]$ $+\delta\varphi[\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin(2\varphi)-\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\sin\varphi]$ $=\varDelta[2-4\sin^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}-4\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ $+2\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi]$ |
$A_2B_1C_2 \quad A_4B_1C_2$ $A_2B_4C_3 \quad A_4B_4C_3$ | $\cos^2\vartheta \cos^2\theta_{\scriptscriptstyle{\rm C}}+\sin^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ $+\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi+\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi$ |
|
$A_1B_2C_2 \quad A_3B_2C_2$ $A_1B_3C_3 \quad A_3B_3C_3$ | $\cos^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi$ | $\delta\vartheta\sin(2\vartheta)\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi$ $-\delta\varphi\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin(2\varphi)$ $=\varDelta(2-4\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi-4\cos^2\theta_{\scriptscriptstyle{\rm C}})$ |
$A_2B_2C_2 \quad A_4B_2C_2$ $A_2B_3C_3 \quad A_4B_3C_3$ | $\sin^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi+\sin^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi $ | |
$A_1B_3C_2 \quad A_3B_3C_2$ $A_1B_2C_3 \quad A_3B_2C_3$ | $\sin^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi$ | $\delta\vartheta\sin(2\vartheta)\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi$ $-\delta\varphi\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin(2\varphi)$ $=\varDelta(2-4\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi-4\sin^2\theta_{\scriptscriptstyle{\rm C}})$ |
$A_2B_3C_2 \quad A_4B_3C_2$ $A_2B_2C_3 \quad A_4B_2C_3$ | $\sin^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi+\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ | |
$A_1B_4C_2 \quad A_3B_4C_2$ $A_1B_1C_3 \quad A_3B_1C_3$ | $\sin^2\vartheta \sin^2\theta_{\scriptscriptstyle{\rm C}}+\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi $ $+\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi$ | $\delta\vartheta[-\sin(2\vartheta)\sin^2\theta_{\scriptscriptstyle{\rm C}}+\sin(2\vartheta)\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi-\cos(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi]$ $+\delta\varphi[\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin(2\varphi)+\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\sin\varphi]$ $=\varDelta[2-4\sin^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}-4\cos^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ $-2\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi]$ |
$A_2B_4C_2 \quad A_4B_4C_2$ $A_2B_1C_3 \quad A_4B_1C_3$ | $\cos^2\vartheta\sin^2\theta_{\scriptscriptstyle{\rm C}}+\sin^2\vartheta\cos^2\theta_{\scriptscriptstyle{\rm C}}\cos^2\varphi$ $+\cos^2\theta_{\scriptscriptstyle{\rm C}}\sin^2\varphi-\frac{1}{2}\sin(2\vartheta)\sin(2\theta_{\scriptscriptstyle{\rm C}})\cos\varphi$ |
Outcomes $A_i B_j C_k$ | Measured fidelity $64f(\vartheta,\varphi)$ | Accuracy estimation $g(\delta\vartheta,\delta\varphi,\varDelta)=0$ |
---|---|---|
$A_1B_4C_4 \quad A_3B_4C_4$ | $\sin^2 \vartheta\sin^2\phi_{\scriptscriptstyle{\rm C}}+\cos^2\phi_{\scriptscriptstyle{\rm C}} $ | $\delta\vartheta\sin(2\vartheta)\sin^2\phi_{\scriptscriptstyle{\rm C}}=2\varDelta(1-2\cos^2 \vartheta\sin^2\phi_{\scriptscriptstyle{\rm C}})$ |
$A_2B_4C_4 \quad A_4B_4C_4$ | $\cos^2 \vartheta\sin^2\phi_{\scriptscriptstyle{\rm C}} $ |
[1] | Awschalom D D, Wrachtrup J, and Zhou B B 2018 Nat. Photonics 12 516 | Quantum technologies with optically interfaced solid-state spins
[2] | Carariego M, Cirac J I, Zoller P et al. 2023 Quantum Sci. Technol. 8 023001 | Propagating quantum microwaves: towards applications in communication and sensing
[3] | van Enk S J, Cirac J I and Zoller P 1998 Science 279 205 | Photonic Channels for Quantum Communication
[4] | Duan L M, Cirac J I, and Zoller P 2001 Nature 414 413 | Long-distance quantum communication with atomic ensembles and linear optics
[5] | Gisin N and Thew R 2007 Nat. Photonics 1 165 | Quantum communication
[6] | Steffen L et al. 2013 Nature 500 319 | Deterministic quantum teleportation with feed-forward in a solid state system
[7] | Gao W B et al. 2013 Nat. Commun. 4 2744 | Quantum teleportation from a propagating photon to a solid-state spin qubit
[8] | Bussiéres F et al. 2014 Nat. Photonics 8 775 | Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
[9] | Pfaff W et al. 2014 Science 345 532 | Unconditional quantum teleportation between distant solid-state quantum bits
[10] | Metcalf B J et al. 2014 Nat. Photonics 8 770 | Quantum teleportation on a photonic chip
[11] | Bennett C H, Brassard G, Crepeau C, Peres A, and Wootters W K 1993 Phys. Rev. Lett. 70 1895 | Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
[12] | Bennett C H, Brassard G, Popescu S, Smolin J A, and Wootters W K 1996 Phys. Rev. Lett. 76 722 | Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels
[13] | Bouwmeester D, Pan J W, Mattle K, Weinfurter H, and Zeilinger A 1997 Nature 390 575 | Experimental quantum teleportation
[14] | Boschi D, Branca S, Hardy L, and Popescu S 1998 Phys. Rev. Lett. 80 1121 | Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels
[15] | Wootters W K and Zurek W H 1982 Nature 299 802 | A single quantum cannot be cloned
[16] | Briegel H J, Cirac J I, and Zoller P 1998 Phys. Rev. Lett. 81 5932 | Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication
[17] | Sangouard N, de Riedmatten N, and Gisin N 2011 Rev. Mod. Phys. 83 33 | Quantum repeaters based on atomic ensembles and linear optics
[18] | van Loock P et al. 2006 Phys. Rev. Lett. 96 240501 | Hybrid Quantum Repeater Using Bright Coherent Light
[19] | Yuan Z S, Chen Y A, Zhao B, Schmiedmayer J, and Pan J W 2008 Nature 454 1098 | Experimental demonstration of a BDCZ quantum repeater node
[20] | Munro W J, Louis S G R, and Nemoto K 2008 Phys. Rev. Lett. 101 040502 | High-Bandwidth Hybrid Quantum Repeater
[21] | Sangouard N, Dubessy R, and Simon C 2009 Phys. Rev. A 79 042340 | Quantum repeaters based on single trapped ions
[22] | Pirandola S, Ottaviani C, and Banchi L 2017 Nat. Commun. 8 15043 | Fundamental limits of repeaterless quantum communications
[23] | Simon C, deRiedmatten H, Afzelius M, Zbinden H, and Gisin N 2007 Phys. Rev. Lett. 98 190503 | Quantum Repeaters with Photon Pair Sources and Multimode Memories
[24] | Nölleke C, Neuzner A, Reiserer A, Rempe G, and Ritter S 2013 Phys. Rev. Lett. 110 140403 | Efficient Teleportation Between Remote Single-Atom Quantum Memories
[25] | Li Z D et al. 2019 Nat. Photonics 13 644 | Experimental quantum repeater without quantum memory
[26] | Wang S C, Zou W J, and Wang X B 2014 Phys. Rev. A 89 022318 | Protecting quantum states from decoherence of finite temperature using weak measurement
[27] | Shi T, Lu L H and Li Y Q 2021 Acta Phys. Sin. 70 230303 (in Chinese) | Selection of entanglement state in quantum repeater process
[28] | Huang L, Zhang Y, and Yu S 2021 Chin. Phys. Lett. 38 040301 | Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration
[29] | Xia X X, Zhang Q, and Pan J W 2018 Quantum Sci. Technol. 3 014012 | Long distance quantum teleportation
[30] | Shor P W 1997 SIAM J. Sci. Stat. Comput. 26 1484 |
[31] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[32] | Feynman R P 1982 Int. J. Theor. Phys. 21 467 | Simulating physics with computers
[33] | Lloyd S 1996 Science 273 1073 | Universal Quantum Simulators
[34] | Georgescu I M, Ashhab S, and Nari F 2014 Rev. Mod. Phys. 86 153 | Quantum simulation
[35] | Xu P, Ma Y Q, Ren J G, Yong H L, Ralph T C, Liao S K, Yin J, Liu W Y, Cai W Q, and Pan J W 2019 Science 366 132 | Satellite testing of a gravitationally induced quantum decoherence model