[1] | Poulin D, Hastings M B, Wecker D, Wiebe N, Doherty A C, and Troyer M 2015 Quantum Inf. Comput. 151 361 |
[2] | Wecker D, Bauer B, Clark B K, Hastings M B, and Troyer M 2014 Phys. Rev. A 90 022305 | Gate-count estimates for performing quantum chemistry on small quantum computers
[3] | Shor P W 1999 SIAM Rev. 41 303 | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
[4] | Bruzewicz C D, Chiaverini J, McConnell R, and Sage J M 2019 Appl. Phys. Rev. 6 021314 | Trapped-ion quantum computing: Progress and challenges
[5] | Hill C D, Peretz E, Hile S J, House M G, Fuechsle M, Rogge S, Simmons M Y, and Hollenberg L C 2015 Sci. Adv. 1 e1500707 | A surface code quantum computer in silicon
[6] | Gidwani B, Sahu V, Shukla S S, Pandey R, Joshi V, Jain V K, and Vyas A 2021 J. Drug Delivery Sci. Technol. 61 102308 | Quantum dots: Prospectives, toxicity, advances and applications
[7] | Atabaki A H, Moazeni S, Pavanello F et al. 2018 Nature 556 349 | Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip
[8] | Devoret M H and Schoelkopf R J 2013 Science 339 1169 | Superconducting Circuits for Quantum Information: An Outlook
[9] | Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 | Circuit quantum electrodynamics
[10] | Paik H, Schuster D I, Bishop L S et al. 2011 Phys. Rev. Lett. 107 240501 | Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture
[11] | Barends R, Kelly J, Megrant A et al. 2013 Phys. Rev. Lett. 111 080502 | Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
[12] | Mooij J, Orlando T, Levitov L, Tian L, Van der Wal C H, and Lloyd S 1999 Science 285 1036 | Josephson Persistent-Current Qubit
[13] | Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S, and Oliver W D 2011 Nat. Phys. 7 565 | Noise spectroscopy through dynamical decoupling with a superconducting flux qubit
[14] | Yan F, Gustavsson S, Kamal A et al. 2016 Nat. Commun. 7 12964 | The flux qubit revisited to enhance coherence and reproducibility
[15] | Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, and Devoret M H 2014 Nature 508 369 | Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles
[16] | Johnson B, Reed M, Houck A A et al. 2010 Nat. Phys. 6 663 | Quantum non-demolition detection of single microwave photons in a circuit
[17] | Stassi R, Cirio M, and Nori F 2020 npj Quantum Inf. 6 67 | Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime
[18] | Yao Y, Xiang L, Guo Z et al. 2023 Nat. Phys. 19 1459 | Observation of many-body Fock space dynamics in two dimensions
[19] | Xu S, Sun Z Z, Wang K et al. 2023 Chin. Phys. Lett. 40 060301 | Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits
[20] | Zhang P, Dong H, Gao Y et al. 2023 Nat. Phys. 19 120 | Many-body Hilbert space scarring on a superconducting processor
[21] | Preskill J 2018 Quantum 2 79 | Quantum Computing in the NISQ era and beyond
[22] | Arute F, Arya K, Babbush R et al. 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[23] | Wu Y, Bao W S, Cao S et al. 2021 Phys. Rev. Lett. 127 180501 | Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
[24] | Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172 | Roads towards fault-tolerant universal quantum computation
[25] | Nielsen M A and Chuang I 2022 Quantum Computation and Quantum Information (American Association of Physics Teachers) |
[26] | Zhao Y, Ye Y, Huang H L, Zhang Y et al. 2022 Phys. Rev. Lett. 129 030501 | Realization of an Error-Correcting Surface Code with Superconducting Qubits
[27] | Krinner S, Lacroix N, Remm A et al. 2022 Nature 605 669 | Realizing repeated quantum error correction in a distance-three surface code
[28] | Cai W, Ma Y, Wang W, Zou C L, and Sun L 2021 Fundam. Res. 1 50 | Bosonic quantum error correction codes in superconducting quantum circuits
[29] | Joshi A, Noh K, and Gao Y Y 2021 Quantum Sci. Technol. 6 033001 | Quantum information processing with bosonic qubits in circuit QED
[30] | Cochrane P T, Milburn G J, and Munro W J 1999 Phys. Rev. A 59 2631 | Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping
[31] | Li L, Zou C L, Albert V V, Muralidharan S, Girvin S, and Jiang L 2017 Phys. Rev. Lett. 119 030502 | Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel
[32] | Bergmann M and van Loock P 2016 Phys. Rev. A 94 012311 | Quantum error correction against photon loss using NOON states
[33] | Michael M H, Silveri M, Brierley R, Albert V V, Salmilehto J, Jiang L, and Girvin S M 2016 Phys. Rev. X 6 031006 | New Class of Quantum Error-Correcting Codes for a Bosonic Mode
[34] | Royer B, Singh S, and Girvin S 2020 Phys. Rev. Lett. 125 260509 | Stabilization of Finite-Energy Gottesman-Kitaev-Preskill States
[35] | Noh K, Albert V V, and Jiang L 2018 IEEE Trans. Inf. Theory 65 2563 | Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes
[36] | Gottesman D, Kitaev A, and Preskill J 2001 Phys. Rev. A 64 012310 | Encoding a qubit in an oscillator
[37] | Mirrahimi M, Leghtas Z, Albert V V, Touzard S, Schoelkopf R J, Jiang L, and Devoret M H 2014 New J. Phys. 16 045014 | Dynamically protected cat-qubits: a new paradigm for universal quantum computation
[38] | Grimsmo A L, Combes J, and Baragiola B Q 2020 Phys. Rev. X 10 011058 | Quantum Computing with Rotation-Symmetric Bosonic Codes
[39] | Li L, Young D J, Albert V V, Noh K, Zou C L, and Jiang L 2021 Phys. Rev. A 103 062427 | Phase-engineered bosonic quantum codes
[40] | Ofek N, Petrenko A, Heeres R et al. 2016 Nature 536 441 | Extending the lifetime of a quantum bit with error correction in superconducting circuits
[41] | Grimm A, Frattini N E, Puri S, Mundhada S O, Touzard S, Mirrahimi M, Girvin S M, Shankar S, and Devoret M H 2020 Nature 584 205 | Stabilization and operation of a Kerr-cat qubit
[42] | Ma W L, Puri S, Schoelkopf R J, Devoret M H, Girvin S M, and Jiang L 2021 Sci. Bull. 66 1789 | Quantum control of bosonic modes with superconducting circuits
[43] | Hu L, Ma Y, Cai W et al. 2019 Nat. Phys. 15 503 | Quantum error correction and universal gate set operation on a binomial bosonic logical qubit
[44] | Ni Z, Li S, Deng X et al. 2023 Nature 616 56 | Beating the break-even point with a discrete-variable-encoded logical qubit
[45] | Campagne-Ibarcq P, Eickbusch A, Touzard S et al. 2020 Nature 584 368 | Quantum error correction of a qubit encoded in grid states of an oscillator
[46] | Sivak V, Eickbusch A, Royer B et al. 2023 Nature 616 50 | Real-time quantum error correction beyond break-even
[47] | Gertler J M, Baker B, Li J, Shirol S, Koch J, and Wang C 2021 Nature 590 243 | Protecting a bosonic qubit with autonomous quantum error correction
[48] | Leghtas Z, Kirchmair G, Vlastakis B, Devoret M H, Schoelkopf R J, and Mirrahimi M 2013 Phys. Rev. A 87 042315 | Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity
[49] | Wang C, Gao Y Y, Reinhold P et al. 2016 Science 352 1087 | A Schrodinger cat living in two boxes
[50] | Krastanov S, Albert V V, Shen C, Zou C L, Heeres R W, Vlastakis B, Schoelkopf R J, and Jiang L 2015 Phys. Rev. A 92 040303 | Universal control of an oscillator with dispersive coupling to a qubit
[51] | Heeres R W, Vlastakis B, Holland E, Krastanov S, Albert V V, Frunzio L, Jiang L, and Schoelkopf R J 2015 Phys. Rev. Lett. 115 137002 | Cavity State Manipulation Using Photon-Number Selective Phase Gates
[52] | Reinhold P, Rosenblum S, Ma W L, Frunzio L, Jiang L, and Schoelkopf R J 2020 Nat. Phys. 16 822 | Error-corrected gates on an encoded qubit
[53] | Xu Y, Ma Y, Cai W et al. 2020 Phys. Rev. Lett. 124 120501 | Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits
[54] | Hastrup J, Park K, Filip R, and Andersen U L 2021 Phys. Rev. Lett. 126 153602 | Unconditional Preparation of Squeezed Vacuum from Rabi Interactions
[55] | Pan X, Schwinger J, Huang N N, Song P, Chua W, Hanamura F, Joshi A, Valadares F, Filip R, and Gao Y Y 2023 Phys. Rev. X 13 021004 | Protecting the Quantum Interference of Cat States by Phase-Space Compression
[56] | Eickbusch A, Sivak V, Ding A Z, Elder S S, Jha S R, Venkatraman J, Royer B, Girvin S, Schoelkopf R J, and Devoret M H 2022 Nat. Phys. 18 1464 | Fast universal control of an oscillator with weak dispersive coupling to a qubit
[57] | Diringer A A, Blumenthal E, Grinberg A, Jiang L, and Hacohen-Gourgy S 2023 arXiv:2301.09831 [quant-ph] | Conditional not displacement: fast multi-oscillator control with a single qubit
[58] | Rosenblum S, Gao Y Y, Reinhold P et al. 2018 Nat. Commun. 9 652 | A CNOT gate between multiphoton qubits encoded in two cavities
[59] | Chou K S, Blumoff J Z, Wang C S, Reinhold P C, Axline C J, Gao Y Y, Frunzio L, Devoret M, Jiang L, and Schoelkopf R 2018 Nature 561 368 | Deterministic teleportation of a quantum gate between two logical qubits
[60] | Gao Y Y, Lester B J, Chou K S, Frunzio L, Devoret M H, Jiang L, Girvin S, and Schoelkopf R J 2019 Nature 566 509 | Entanglement of bosonic modes through an engineered exchange interaction
[61] | Lau H K and Plenio M B 2016 Phys. Rev. Lett. 117 100501 | Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
[62] | Gao Y Y, Lester B J, Zhang Y, Wang C, Rosenblum S, Frunzio L, Jiang L, Girvin S, and Schoelkopf R J 2018 Phys. Rev. X 8 021073 | Programmable Interference between Two Microwave Quantum Memories
[63] | Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, and Glaser S J 2005 J. Magn. Reson. 172 296 | Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
[64] | Abdelhafez M, Schuster D I, and Koch J 2019 Phys. Rev. A 99 052327 | Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation
[65] | Niu M Y, Boixo S, Smelyanskiy V N, and Neven H 2019 npj Quantum Inf. 5 33 | Universal quantum control through deep reinforcement learning
[66] | Zhang X M, Wei Z, Asad R, Yang X C, and Wang X 2019 npj Quantum Inf. 5 85 | When does reinforcement learning stand out in quantum control? A comparative study on state preparation
[67] | Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, and Schuster D I 2022 Nat. Phys. 18 879 | Multimode photon blockade
[68] | Porotti R, Peano V, and Marquardt F 2023 PRX Quantum 4 030305 | Gradient-Ascent Pulse Engineering with Feedback
[69] | Leghtas Z, Touzard S, Pop I M et al. 2015 Science 347 853 | Confining the state of light to a quantum manifold by engineered two-photon loss
[70] | Puri S, Boutin S, and Blais A 2017 npj Quantum Inf. 3 18 | Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving
[71] | Puri S, St-Jean L, Gross J A et al. 2020 Sci. Adv. 6 5901 | Bias-preserving gates with stabilized cat qubits
[72] | Goto H 2016 Phys. Rev. A 93 050301 | Universal quantum computation with a nonlinear oscillator network
[73] | Puri S, Grimm A, Campagne-Ibarcq P, Eickbusch A, Noh K, Roberts G, Jiang L, Mirrahimi M, Devoret M H, and Girvin S M 2019 Phys. Rev. X 9 041009 | Stabilized Cat in a Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector
[74] | Ma Y, Xu Y, Mu X et al. 2020 Nat. Phys. 16 827 | Error-transparent operations on a logical qubit protected by quantum error correction
[75] | Place A P, Rodgers L V, Mundada P et al. 2021 Nat. Commun. 12 1779 | New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
[76] | Wang C, Li X, Xu H et al. 2022 npj Quantum Inf. 8 3 | Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
[77] | Minev Z K, Serniak K, Pop I M, Leghtas Z, Sliwa K, Hatridge M, Frunzio L, Schoelkopf R J, and Devoret M H 2016 Phys. Rev. Appl. 5 044021 | Planar Multilayer Circuit Quantum Electrodynamics
[78] | Jiang L, Taylor J M, Sørensen A S, and Lukin M D 2007 Phys. Rev. A 76 062323 | Distributed quantum computation based on small quantum registers
[79] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[80] | Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, and Kim J 2014 Phys. Rev. A 89 022317 | Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
[81] | Guillaud J and Mirrahimi M 2019 Phys. Rev. X 9 041053 | Repetition Cat Qubits for Fault-Tolerant Quantum Computation
[82] | Grimsmo A L and Puri S 2021 PRX Quantum 2 020101 | Quantum Error Correction with the Gottesman-Kitaev-Preskill Code
[83] | Huang H Y, Kueng R, and Preskill J 2020 Nat. Phys. 16 1050 | Predicting many properties of a quantum system from very few measurements
[84] | Wilson C, Otterbach J, Tezak N, Smith R, Polloreno A, Karalekas P J, Heidel S, Alam M S, Crooks G, and da Silva M 2018 arXiv:1806.08321 [quant-ph] | Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers
[85] | DiCarlo L, Chow J M, Gambetta J M et al. 2009 Nature 460 240 | Demonstration of two-qubit algorithms with a superconducting quantum processor