[1] | Bergeron D E, Castleman Jr A W, Morisato T, and Khanna S N 2004 Science 304 84 | Formation of Al13 I- : Evidence for the Superhalogen Character of Al13
[2] | Feng M, Zhao J, and Petek H 2008 Science 320 359 | Atomlike, Hollow-Core–Bound Molecular Orbitals of C60
[3] | Luo Z X and Castleman A W 2014 Acc. Chem. Res. 47 2931 | Special and General Superatoms
[4] | Gao Y, Bulusu S, and Zeng X C 2005 J. Am. Chem. Soc. 127 15680 | Gold-Caged Metal Clusters with Large HOMO−LUMO Gap and High Electron Affinity
[5] | Jena P and Sun Q 2018 Chem. Rev. 118 5755 | Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials
[6] | Inoshita T, Ohnishi S, and Oshiyama A 1986 Phys. Rev. Lett. 57 2560 | Electronic Structure of the Superatom: A Quasiatomic System Based on a Semiconductor Heterostructure
[7] | Khanna S N and Jena P 1995 Phys. Rev. B 51 13705 | Atomic clusters: Building blocks for a class of solids
[8] | Pauli W 1925 Z. Phys. 31 765 | Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren
[9] | Hund F 1981 Linienspektren und Periodisches System der Elemente (Springer: Berlin) |
[10] | Cowan R D 1981 The Theory of Atomic Structure and Spectra (Oakland, CA: University of California Press) |
[11] | Sobelman I I 1992 Atomic Spectra and Radiative Transitions (New York: Springer-Verlag) |
[12] | Reber A C and Khanna S N 2017 Acc. Chem. Res. 50 255 | Superatoms: Electronic and Geometric Effects on Reactivity
[13] | Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann M A, and von Issendorff B 2004 Phys. Rev. Lett. 93 093401 | Symmetry and Electronic Structure of Noble-Metal Nanoparticles and the Role of Relativity
[14] | Jiang D E and Walter M 2011 Phys. Rev. B 84 193402 | Au : A large tetrahedral magic cluster
[15] | Kaappa S, Malola S, and Hakkinen H 2018 J. Phys. Chem. A 122 8576 | Point Group Symmetry Analysis of the Electronic Structure of Bare and Protected Metal Nanocrystals
[16] | Kang S Y, Nan Z A, and Wang Q M 2022 J. Phys. Chem. Lett. 13 291 | Superatomic Orbital Splitting in Coinage Metal Nanoclusters
[17] | Cotton F A 1991 Chemical Applications of Group Theory (Chichester: John Wiley & Sons) |
[18] | Gelessus A, Thiel W, and Weber W 1995 J. Chem. Educ. 72 505 | Multipoles and Symmetry
[19] | Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, and Cohen M L 1984 Phys. Rev. Lett. 52 2141 | Electronic Shell Structure and Abundances of Sodium Clusters
[20] | Guha S and Nakamoto K 2005 Coord. Chem. Rev. 249 1111 | Electronic structures and spectral properties of endohedral fullerenes
[21] | Rioux F 1994 J. Chem. Educ. 71 464 | Quantum Mechanics, Group Theory, and C60
[22] | Jung J, Kim H, and Han Y K 2011 J. Am. Chem. Soc. 133 6090 | Can an Electron-Shell Closing Model Explain the Structure and Stability of Ligand-Stabilized Metal Clusters?
[23] | Omoda T, Takano S, and Tsukuda T 2021 Small 17 e2001439 | Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver
[24] | Wang R, Yang X, Huang W, Liu Z, Zhu Y, Liu H, and Wang Z 2023 iScience 26 106281 | Superatomic states under high pressure
[25] | Zhang L, Wang Y, Lv J, and Ma Y 2017 Nat. Rev. Mater. 2 17005 | Materials discovery at high pressures
[26] | Yakobson B I, Brabec C J, and Bernholc J 1996 Phys. Rev. Lett. 76 2511 | Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response
[27] | Cao G X and Chen X 2006 Phys. Rev. B 73 155435 | Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method
[28] | Xiao T and Liao K 2003 Nanotechnology 14 1197 | Non-linear elastic response of fullerene balls under uniform and axial deformations
[29] | Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, TScott L T, Gelmont M, Olevano D, and Issendorff B V 2000 Nature 407 60 | Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20
[30] | Dunk P W, Kaiser N K, Mulet-Gas M, Rodriguez-Fortea A, Poblet J M, Shinohara H, Hendrickson C L, Marshall A G, and Kroto H W 2012 J. Am. Chem. Soc. 134 9380 | The Smallest Stable Fullerene, M@C28 (M = Ti, Zr, U): Stabilization and Growth from Carbon Vapor
[31] | Adams G B, Sankey O F, Page J B, and O'Keeffe M 1993 Chem. Phys. 176 61 | Jahn-Teller distortions in solid C20 and other fullerene structures
[32] | Galli G, Gygi F, and Golaz J C 1998 Phys. Rev. B 57 1860 | Vibrational and electronic properties of neutral and negatively charged clusters
[33] | Yang Y F, Klaiman S, Gromov E V, and Cederbaum L S 2018 Phys. Chem. Chem. Phys. 20 17434 | Bound electronic states of the smallest fullerene C20− anion
[34] | Manna D and Martin J M 2016 J. Phys. Chem. A 120 153 | What Are the Ground State Structures of C20 and C24 ? An Explicitly Correlated Ab Initio Approach
[35] | Carter R L 1997 Molecular Symmetry and Group Theory (New York: John Wiley & Sons) |
[36] | Fowler P W and Woolrich J 1986 Chem. Phys. Lett. 127 78 | π-Systems in three dimensions
[37] | Miura K, Kamiya S, and Sasaki N 2003 Phys. Rev. Lett. 90 055509 | Molecular Bearings
[38] | Wang R, Liu Z, Yu F, Li J, and Wang Z 2023 J. Chem. Phys. 158 244703 | High-pressure-induced electronic and structural transition of superatoms
[39] | Li H X and Branicio P S 2019 Carbon 152 727 | Ultra-low friction of graphene/C60/graphene coatings for realistic rough surfaces
[40] | Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220 | Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy
[41] | Pearson R G 1975 Proc. Natl. Acad. Sci. USA 72 2104 | Concerning Jahn-Teller Effects
[42] | Halcrow M A 2013 Chem. Soc. Rev. 42 1784 | Jahn–Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials