[1] | Li Y, Li W, Han T et al. 2021 Nat. Rev. Mater. 6 488 | Transforming heat transfer with thermal metamaterials and devices
[2] | Ju R, Xu G, Xu L et al. 2023 Adv. Mater. 35 2209123 | Convective Thermal Metamaterials: Exploring High‐Efficiency, Directional, and Wave‐Like Heat Transfer
[3] | Zhang Z R, Xu L J, Qu T et al. 2023 Nat. Rev. Phys. 5 218 | Diffusion metamaterials
[4] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 | Active Thermal Wave Cloak
[5] | Han T C, Bai X, Gao D L et al. 2014 Phys. Rev. Lett. 112 054302 | Experimental Demonstration of a Bilayer Thermal Cloak
[6] | Han T C, Bai X, Thong J T L et al. 2014 Adv. Mater. 26 1731 | Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials
[7] | Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133 | Controlling thermal waves with transformation complex thermotics
[8] | Zeng L W and Song R X 2014 Appl. Phys. Lett. 104 201905 | Experimental observation of heat transparency
[9] | Xu L J, Yang S, and Huang J P 2019 Phys. Rev. Appl. 11 034056 | Thermal Transparency Induced by Periodic Interparticle Interaction
[10] | He X and Wu L Z 2013 Phys. Rev. E 88 033201 | Thermal transparency with the concept of neutral inclusion
[11] | Chen F and Yuan L D 2015 Sci. Rep. 5 11552 | Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials
[12] | Shen X Y, Li Y, Jiang C R et al. 2016 Appl. Phys. Lett. 109 031907 | Thermal cloak-concentrator
[13] | Guenneau S, Amra C, and Veynante D 2012 Opt. Express 20 8207 | Transformation thermodynamics: cloaking and concentrating heat flux
[14] | Li Y, Shen X Y, Huang J P et al. 2016 Phys. Lett. A 380 1641 | Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow
[15] | Li Y, Qi M H, Li J X et al. 2022 Nat. Commun. 13 2683 | Heat transfer control using a thermal analogue of coherent perfect absorption
[16] | Xu L J, Liu J R, Jin P et al. 2023 Natl. Sci. Rev. 10 nwac159 | Black-hole-inspired thermal trapping with graded heat-conduction metadevices
[17] | Li Y, Zhu K J, Peng Y G et al. 2019 Nat. Mater. 18 48 | Thermal meta-device in analogue of zero-index photonics
[18] | Qi M H, Wang D, Cao P C et al. 2022 Adv. Mater. 34 2202241 | Geometric Phase and Localized Heat Diffusion
[19] | Tsang L, Liao T H, and Tan S 2021 Prog. Electromagn. Res. 171 137 | CALCULATIONS OF BANDS AND BAND FIELD SOLUTIONS IN TOPOLOGICAL ACOUSTICS USING THE BROADBAND GREEN'S FUNCTION-KKR-MULTIPLE SCATTERING METHOD
[20] | Jia D, Wang Y, Ge Y et al. 2021 Prog. Electromagn. Res. 172 13 | TUNABLE TOPOLOGICAL REFRACTIONS IN VALLEY SONIC CRYSTALS WITH TRIPLE VALLEY HALL PHASE TRANSITIONS (INVITED PAPER)
[21] | Xu G Q, Zhou X, Yang S H et al. 2023 Nat. Commun. 14 3252 | Observation of bulk quadrupole in topological heat transport
[22] | Wu H T, Hu H, Wang X X et al. 2023 Adv. Mater. 35 2210825 | Higher‐Order Topological States in Thermal Diffusion
[23] | Xu G Q, Li W, Zhou X et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2110018119 | Observation of Weyl exceptional rings in thermal diffusion
[24] | Xu L J, Xu G Q, Huang J P et al. 2022 Phys. Rev. Lett. 128 145901 | Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials
[25] | Xu L J, Xu G Q, Li J X et al. 2022 Phys. Rev. Lett. 129 155901 | Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials
[26] | Li Y, Peng Y G, Han L et al. 2019 Science 364 170 | Anti–parity-time symmetry in diffusive systems
[27] | Cao P C, Peng Y G, Li Y et al. 2022 Chin. Phys. Lett. 39 057801 | Phase-Locking Diffusive Skin Effect
[28] | Li J X, Li Y, Cao P C et al. 2022 Nat. Commun. 13 167 | Reciprocity of thermal diffusion in time-modulated systems
[29] | Hu H, Han S, Yang Y et al. 2022 Adv. Mater. 34 2202257 | Observation of Topological Edge States in Thermal Diffusion
[30] | Li Z P, Cao G T, Li C H et al. 2021 Prog. Electromagn. Res. 171 1 | NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW)
[31] | Xu G Q, Li Y, Li W et al. 2021 Phys. Rev. Lett. 127 105901 | Configurable Phase Transitions in a Topological Thermal Material
[32] | Zhang X J, Zhang T, Lu M H, and Chen Y F 2022 Adv. Phys.: X 7 2109431 | A review on non-Hermitian skin effect
[33] | Kawabata K, Sato M, and Shiozaki K 2020 Phys. Rev. B 102 205118 | Higher-order non-Hermitian skin effect
[34] | Okugawa R, Takahashi R, and Yokomizo K 2020 Phys. Rev. B 102 241202 | Second-order topological non-Hermitian skin effects
[35] | Okuma N, Kawabata K, Shiozaki K et al. 2020 Phys. Rev. Lett. 124 086801 | Topological Origin of Non-Hermitian Skin Effects
[36] | Zhang K, Yang Z, and Fang C 2022 Nat. Commun. 13 2496 | Universal non-Hermitian skin effect in two and higher dimensions
[37] | Yan Q H, Chen H H, and Yang Y H 2021 Prog. Electromagn. Res. 172 33 | NON-HERMITIAN SKIN EFFECT AND DELOCALIZED EDGE STATES IN PHOTONIC CRYSTALS WITH ANOMALOUS PARITY-TIME SYMMETRY
[38] | Cao P C, Li Y, Peng Y G et al. 2021 Commun. Phys. 4 230 | Diffusive skin effect and topological heat funneling
[39] | Liu Y K, Cao P C, Qi M et al. 2023 arXiv:2308.08839 [physics.class-ph] | Observation of Non-Hermitian Skin Effect in Thermal Diffusion
[40] | Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404 | Non-Bloch Band Theory of Non-Hermitian Systems
[41] | Yokomizo K and Murakami S 2023 Phys. Rev. B 107 195112 | Non-Bloch bands in two-dimensional non-Hermitian systems
[42] | Yang Z S, Zhang K, Fang C et al. 2020 Phys. Rev. Lett. 125 226402 | Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory
[43] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[44] | Zhang K, Yang Z S, and Fang C 2020 Phys. Rev. Lett. 125 126402 | Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems
[45] | Xu G Q, Zhou X, Li Y et al. 2023 Phys. Rev. Lett. 130 266303 | Non-Hermitian Chiral Heat Transport
[46] | Xu G Q, Yang Y H, Zhou X et al. 2022 Nat. Phys. 18 450 | Diffusive topological transport in spatiotemporal thermal lattices