[1] | Metzger C H and Karrai K 2004 Nature 432 1002 | Cavity cooling of a microlever
[2] | Kleckner D and Bouwmeester D 2006 Nature 444 75 | Sub-kelvin optical cooling of a micromechanical resonator
[3] | Arcizet O, Briant T, Heidmann A, and Pinard M 2006 Phys. Rev. A 73 033819 | Beating quantum limits in an optomechanical sensor by cavity detuning
[4] | Ian H, Gong Z R, Liu Y X, Sun C P, and Nori F 2008 Phys. Rev. A 78 013824 | Cavity optomechanical coupling assisted by an atomic gas
[5] | Marquardt F, Chen J P, Clerk A A, and Girvin S M 2007 Phys. Rev. Lett. 99 093902 | Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion
[6] | Schliesser A, Rivière R, Anetsberger G, Arcizet O, and Kippenberg T J 2008 Nat. Phys. 4 415 | Resolved-sideband cooling of a micromechanical oscillator
[7] | Lai D G, Zou F, Hou B P, Xiao Y F, and Liao J Q 2018 Phys. Rev. A 98 023860 | Simultaneous cooling of coupled mechanical resonators in cavity optomechanics
[8] | Zhang J Q, Li Y, Feng M, and Xu Y 2012 Phys. Rev. A 86 053806 | Precision measurement of electrical charge with optomechanically induced transparency
[9] | Xiong H, Si L G, and Wu Y 2017 Appl. Phys. Lett. 110 171102 | Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics
[10] | Xiong H, Liu Z X, and Wu Y 2017 Opt. Lett. 42 3630 | Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation
[11] | Schreppler S, Spethmann N, Brahms N, Botter T, Barrios M, and Stamper-Kurn D M 2014 Science 344 1486 | Optically measuring force near the standard quantum limit
[12] | Matsumoto N, Lopez S B C N, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, and Edamatsu K 2019 Phys. Rev. Lett. 122 071101 | Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements
[13] | Meers B and MacDonald N 1989 Phys. Rev. A 40 3754 | Potential radiation-pressure-induced instabilities in cavity interferometers
[14] | Caves C M 1980 Phys. Rev. Lett. 45 75 | Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer
[15] | Kippenberg T J and Vahala K J 2008 Science 321 1172 | Cavity Optomechanics: Back-Action at the Mesoscale
[16] | Aspelmeyer M, Kippenberg T J, and Marquardt F 2014 Rev. Mod. Phys. 86 1391 | Cavity optomechanics
[17] | Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, and Kippenberg T J 2010 Science 330 1520 | Optomechanically Induced Transparency
[18] | Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L, and Nori F 2015 Sci. Rep. 5 9663 | Optomechanically-induced transparency in parity-time-symmetric microresonators
[19] | Chembo Y K, Strekalov D V, and Yu N 2010 Phys. Rev. Lett. 104 103902 | Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators
[20] | Xiong H, Si L G, Zheng A S, Yang X, and Wu Y 2012 Phys. Rev. A 86 013815 | Higher-order sidebands in optomechanically induced transparency
[21] | Rabl P 2011 Phys. Rev. Lett. 107 063601 | Photon Blockade Effect in Optomechanical Systems
[22] | Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601 | Nonreciprocal Photon Blockade
[23] | Wang K, Wu Q, Yu Y F, and Zhang Z M 2019 Phys. Rev. A 100 053832 | Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity
[24] | Shen S T, Qu Y, Li J H, and Wu Y 2019 Phys. Rev. A 100 023814 | Tunable photon statistics in parametrically amplified photonic molecules
[25] | Ho M, Oudot E, Bancal J D, and Sangouard N 2018 Phys. Rev. Lett. 121 023602 | Witnessing Optomechanical Entanglement with Photon Counting
[26] | Hu C S, Yang Z B, Wu H, Li Y, and Zheng S B 2018 Phys. Rev. A 98 023807 | Twofold mechanical squeezing in a cavity optomechanical system
[27] | Kong C, Liu J, and Xiong H 2023 Front. Phys. 18 12501 | Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect
[28] | Grudinin I S, Lee H, Painter O, and Vahala K J 2010 Phys. Rev. Lett. 104 083901 | Phonon Laser Action in a Tunable Two-Level System
[29] | Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, and Nori F 2014 Phys. Rev. Lett. 113 053604 | -Symmetric Phonon Laser
[30] | He B, Yang L, and Xiao M 2016 Phys. Rev. A 94 031802 | Dynamical phonon laser in coupled active-passive microresonators
[31] | Lü H, Özdemir S K, Kuang L M, Nori F, and Jing H 2017 Phys. Rev. Appl. 8 044020 | Exceptional Points in Random-Defect Phonon Lasers
[32] | Zhang Y L, Zou C L, Yang C S, Jing H, Dong C H, Guo G C, and Zou X B 2018 New J. Phys. 20 093005 | Phase-controlled phonon laser
[33] | Lin Q, He B, and Xiao M 2021 Phys. Rev. Res. 3 L032018 | Catastrophic transition between dynamical patterns in a phonon laser
[34] | Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, and Udem T 2009 Nat. Phys. 5 682 | A phonon laser
[35] | Kabuss J, Carmele A, Brandes T, and Knorr A 2012 Phys. Rev. Lett. 109 054301 | Optically Driven Quantum Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser Scheme
[36] | Khaetskii A, Golovach V N, Hu X, and Žutić I 2013 Phys. Rev. Lett. 111 186601 | Proposal for a Phonon Laser Utilizing Quantum-Dot Spin States
[37] | Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 | Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond
[38] | Kemiktarak U, Durand M, Metcalfe M, and Lawall J 2014 Phys. Rev. Lett. 113 030802 | Mode Competition and Anomalous Cooling in a Multimode Phonon Laser
[39] | Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D, and Painter O 2015 Nature 520 522 | Phonon counting and intensity interferometry of a nanomechanical resonator
[40] | Ganesan A, Do C, and Seshia A 2017 Phys. Rev. Lett. 118 033903 | Phononic Frequency Comb via Intrinsic Three-Wave Mixing
[41] | Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577 | Quantum optical circulator controlled by a single chirally coupled atom
[42] | Wang X, Yang W X, Chen A X, Li L, Shui T, Li X, and Wu Z 2022 Quantum Sci. Technol. 7 015025 | Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling
[43] | Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, and Molenkamp L W 1999 Nature 402 787 | Injection and detection of a spin-polarized current in a light-emitting diode
[44] | Borlenghi S, Wang W, Fangohr H, Bergqvist L, and Delin A 2014 Phys. Rev. Lett. 112 047203 | Designing a Spin-Seebeck Diode
[45] | Mahmoud A M, Davoyan A R, and Engheta N 2015 Nat. Commun. 6 8359 | All-passive nonreciprocal metastructure
[46] | Hamann A R, Müller C, Jerger M, Zanner M, Combes J, Pletyukhov M, Weides M, Stace T M, and Fedorov A 2018 Phys. Rev. Lett. 121 123601 | Nonreciprocity Realized with Quantum Nonlinearity
[47] | Dötsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P, and Popkov A F 2005 J. Opt. Soc. Am. B 22 240 | Applications of magneto-optical waveguides in integrated optics: review
[48] | Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M, and Kottos T 2013 Phys. Rev. Lett. 110 234101 | Observation of Asymmetric Transport in Structures with Active Nonlinearities
[49] | Peng B, Özdemir K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 | Parity–time-symmetric whispering-gallery microcavities
[50] | Del Bino L, Silver J M, Woodley M T M, Stebbings S L, Zhao X, and Del'Haye P 2018 Optica 5 279 | Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect
[51] | Kong C, Xiong H, and Wu Y 2019 Phys. Rev. Appl. 12 034001 | Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect
[52] | Sounas D L and Alú A 2017 Nat. Photon. 11 774 | Non-reciprocal photonics based on time modulation
[53] | Xue W S, Shen H Z, and Yi X X 2020 Opt. Lett. 45 4424 | Nonreciprocal conventional photon blockade in driven dissipative atom-cavity
[54] | Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037 | Nonreciprocal Phonon Laser
[55] | Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M, and Jing H 2020 Phys. Rev. Lett. 125 143605 | Nonreciprocal Optomechanical Entanglement against Backscattering Losses
[56] | Zhang D W, Zheng L L, You C, Hu C S, Wu Y, and Lü X Y 2021 Phys. Rev. A 104 033522 | Nonreciprocal chaos in a spinning optomechanical resonator
[57] | Wang X, Huang K W, and Xiong H 2023 Opt. Express 31 5492 | Nonreciprocal sideband responses in a spinning microwave magnomechanical system
[58] | Xia X W, Xu J P, and Yang Y P 2014 Phys. Rev. A 90 043857 | Controllable optical bistability of an asymmetric cavity containing a single two-level atom
[59] | Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, and Zhang T C 2019 Phys. Rev. Lett. 123 233604 | Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity
[60] | Xia X W, Zhang X Q, Xu J P, Li H Z, Fu Z Y, and Yang Y P 2021 Phys. Rev. A 104 063713 | Giant nonreciprocal unconventional photon blockade with a single atom in an asymmetric cavity
[61] | Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, and Harris J G E 2008 Nature 452 72 | Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
[62] | Akulshin A M, Barreiro S, and Lezama A 1998 Phys. Rev. A 57 2996 | Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor
[63] | Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X, and Wu J H 2015 Opt. Commun. 338 569 | Tunable slow and fast light in an atom-assisted optomechanical system
[64] | Liu Z X, Xiong H, and Wu Y 2018 Phys. Rev. A 97 013801 | Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system
[65] | Gardiner C, Zoller P, and Zoller P 2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer Science & Business Media) |
[66] | Baumann K, Guerlin C, Brennecke F, and Esslinger T 2010 Nature 464 1301 | Dicke quantum phase transition with a superfluid gas in an optical cavity
[67] | Jiang Y J, Lv H, and Jing H 2018 Chin. Phys. Lett. 35 044205 | Superradiance-Driven Phonon Laser
[68] | Coulais C, Sounas D, and Alù A 2017 Nature 542 461 | Static non-reciprocity in mechanical metamaterials