[1] | Li L L, Zhao H T, Liu C, Li L, and Cui T J 2022 eLight 2 7 | Intelligent metasurfaces: control, communication and computing
[2] | Li J C, Zhao X Y, Wu W J, Ji X W, Lu Y L, and Zhang L Q 2021 Chem. Eng. J. 415 129054 | Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity
[3] | Qin F X and Brosseau C 2012 J. Appl. Phys. 111 61301 | A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
[4] | Zheng K, Jia K, Liu W, Li K X, and Wang D H 2020 New Chem. Mater. 48 77 (in Chinese) |
[5] | Wang X W, Shi Z F, Li Y R, Wang X, and Gong R Z 2021 J. Magn. Mater. Devices 52 24 (in Chinese) |
[6] | Wang X W, Qin W, Wang X, Feng Z K, and Gong R Z 2022 J. Magn. Mater. Devices 53 11 (in Chinese) |
[7] | Pan Y, Yang B, Jia N, Yu Y N, Xu X, Wang Y Y, Xia R, Qian J S, Wang C J, Sun A Q, Shi Y, and Fang Y R 2021 Ind. Eng. Chem. Res. 60 12316 | Enhanced Thermally Conductive and Microwave Absorbing Properties of Polymethyl Methacrylate/Ni@GNP Nanocomposites
[8] | Fu K, Liu X Y, Yang Y J, Wang Z J, Zhou W Y, Tong G X, Wang X J, and Wu W H 2023 Chem. Eng. J. 457 141318 | Synchronously enhanced electromagnetic wave absorption and heat conductance capabilities of flower-like porous γ-Al2O3@Ni@C composites
[9] | Yang X F, Fu K, Wu L S, Tang X, Wang J L, Tong G X, Chen D B, and Wu W H 2022 Carbon 199 1 | Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels
[10] | Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X, and Wu W H 2023 Chem. Eng. J. 451 138492 | Synergistically enhanced heat conductivity-microwave absorption capabilities of g-C3N4@Fe@C hollow micro-polyhedra via interface and composition modulation
[11] | Zhang Z, Wang J D, Shang J, Xu Y D, Wan Y J, Lin Z Q, Sun R, and Hu Y G 2023 Small 19 2205716 | A Through‐Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption
[12] | Jiang Y 2019 Constructing Network Structure to Fabricate Polymer Composites for Thermal Conduction and Microwave Absorption (Ph.D. Dissertation) (Hefei: University of Science and Technology of China) (in Chinese) |
[13] | Zhang Y Q, Yi Y S, Gao X Y, Li X X, Jin H, and Zhang L Z 2020 Rare Met. Mater. Eng. 49 655 (in Chinese) | Study on Aluminum Nitride Microwave Attenuation Ceramics with High Thermal Conductivity
[14] | Lu W H, Li X Y, Cheng W H, and Qiu T 2010 Ceramic Transactions (Hoboken: Wiley) vol 210 chap 9 p 479 |
[15] | Zhang X Y, Tan S H, Zhang J X, Jiang D L, Hu B, and Gao C 2004 J. Mater. Res. 19 2759 | Lossy AlN–SiC composites fabricated by spark plasma sintering
[16] | Fang X, Pan L M, Yin S, Chen H X, Qiu T, and Yang J 2020 Ceram. Int. 46 21505 | Spherical glassy carbon/AlN microwave attenuating composite ceramics with high thermal conductivity and strong attenuation
[17] | Fang X, Jiang L, Pan L M, Yin S, Qiu T, and Yang J 2021 J. Adv. Ceram. 10 301 | High-thermally conductive AlN-based microwave attenuating composite ceramics with spherical graphite as attenuating agent
[18] | Wang L F, An L Q, Zhou G H, Wang X G, Sun K, Chen H T, and Hong H T 2022 J. Master. Sci. Mater. Electron. 33 10723 | Dense AlN/FeSiAl composite ceramics with high thermal conductivity and strong microwave absorption
[19] | Li P W, Wang C B, Liu X H, Shen Q, and Zhang L M 2019 Adv. Appl. Ceram. 118 313 | Structural, thermal and dielectric properties of AlN–SiC composites fabricated by plasma activated sintering
[20] | He Y Q, Li X Y, Zhang J X, Li X G, Duan Y S, Huang M M, Bai H N, Jiang D L, and Qiu T 2018 J. Eur. Ceram. Soc. 38 501 | Method for fabricating microwave absorption ceramics with high thermal conductivity
[21] | Gu J L, Sang L L, Pan B, Feng Y B, Yang J, and Li X Y 2018 Materials 11 969 | Thermal Conductivity and High-Frequency Dielectric Properties of Pressureless Sintered SiC-AlN Multiphase Ceramics
[22] | Ding M H, Liu Y Q, Lu X R, and Tang W Z 2019 Materials 12 3700 | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films
[23] | Chen G R and Tuan W H 2022 Int. J. Appl. Ceram. Technol. 19 1001 | Bonding microwave absorbing ferrites to thermal conducting copper
[24] | Lee D, So S, Hu G W, Kim M, Badloe T, Cho H, Kim J, Kim H, Qiu C W, and Rho J 2022 eLight 2 1 | Hyperbolic metamaterials: fusing artificial structures to natural 2D materials
[25] | Belov P A, Marqués R, Maslovski S I, Nefedov I S, Silveirinha C R, and Tretyakov S A 2003 Phys. Rev. B 67 113103 | Strong spatial dispersion in wire media in the very large wavelength limit
[26] | Belov P A, Tretyakov S A, and Viitanen A J 2002 J. Electromagn. Waves Appl. 16 1153 | Dispersion and Reflection Properties of Artificial Media Formed By Regular Lattices of Ideally Conducting Wires
[27] | Yang H 2015 Study on the Effective Model of the Wire Medium by Using the Finite-Difference Time-Domain Method (Ph.D. Dissertation) (Beijing: Beijing Institute of Technology) (in Chinese) |