[1] | Wang L Q, Wang Z, Wang C, and Ren J 2022 Phys. Rev. Lett. 128 067701 | Cycle Flux Ranking of Network Analysis in Quantum Thermal Devices
[2] | Wang Y and Tu Z C 2012 Phys. Rev. E 85 011127 | Efficiency at maximum power output of linear irreversible Carnot-like heat engines
[3] | Chen J F, Sun C P, and Dong H 2019 Phys. Rev. E 100 032144 | Boosting the performance of quantum Otto heat engines
[4] | Zhang Y C and He J Z 2013 Chin. Phys. Lett. 30 010501 | Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field
[5] | Saygın H and Şişman A 2001 Appl. Energy 69 77 | Brayton refrigeration cycles working under quantum degeneracy conditions
[6] | Lin B H and Chen J C 2003 Phys. Rev. E 68 056117 | Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle
[7] | He J Z, Xin Y, and He X 2007 Appl. Energy 84 176 | Performance optimization of quantum Brayton refrigeration cycle working with spin systems
[8] | Bener C M, Brody D C, and Meister B K 2000 J. Phys. A 33 4427 | Quantum mechanical Carnot engine
[9] | Leggio B and Antezza M 2016 Phys. Rev. E 93 022122 | Otto engine beyond its standard quantum limit
[10] | Erdman P A, Cavina V, Fazio R, Taddei F, and Giovannetti V 2019 New J. Phys. 21 103049 | Maximum power and corresponding efficiency for two-level heat engines and refrigerators: optimality of fast cycles
[11] | Quan H T, Zhang P, and Sun C P 2005 Phys. Rev. E 72 056110 | Quantum heat engine with multilevel quantum systems
[12] | Kosloff R and Rezek Y 2017 Entropy 19 136 | The Quantum Harmonic Otto Cycle
[13] | Reid B, Pigeon S, Antezza M, and de Chiara G 2017 Europhys. Lett. 120 60006 | A self-contained quantum harmonic engine
[14] | Abah O and Lutz E 2016 Europhys. Lett. 113 60002 | Optimal performance of a quantum Otto refrigerator
[15] | Frim A G and DeWeese M R 2022 Phys. Rev. E 105 L052103 | Optimal finite-time Brownian Carnot engine
[16] | Zhang T, Liu W T, Chen P X, and Li C Z 2007 Phys. Rev. A 75 062102 | Four-level entangled quantum heat engines
[17] | Funo K, Watanabe Y, and Ueda M 2013 Phys. Rev. A 88 052319 | Thermodynamic work gain from entanglement
[18] | Ji Y H, Hu J J, and Hu Y 2012 Chin. Phys. B 21 110304 | Comparison and control of the robustness between quantum entanglement and quantum correlation in an open quantum system
[19] | Francica G, Goold J, and Plastina F 2019 Phys. Rev. E 99 042105 | Role of coherence in the nonequilibrium thermodynamics of quantum systems
[20] | Camati P A, Santos J F G, and Serra R M 2019 Phys. Rev. A 99 062103 | Coherence effects in the performance of the quantum Otto heat engine
[21] | Rahav S, Harbola U, and Mukamel S 2012 Phys. Rev. A 86 043843 | Heat fluctuations and coherences in a quantum heat engine
[22] | Wen J and Li G Q 2018 Chin. Phys. Lett. 35 060301 | Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process
[23] | Brandner K, Bauer M, and Seifert U 2017 Phys. Rev. Lett. 119 170602 | Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response
[24] | Yang Y Y, Li L J, Ye L, and Wang D 2022 Chin. Phys. B 31 100303 | Quantum correlation and entropic uncertainty in a quantum-dot system
[25] | Wang C and Chen Q H 2013 New J. Phys. 15 103020 | Exact dynamics of quantum correlations of two qubits coupled to bosonic baths
[26] | Fei Z Y, Quan H T, and Liu F 2018 Phys. Rev. E 98 012132 | Quantum corrections of work statistics in closed quantum systems
[27] | Horowitz J M and Jacobs K 2014 Phys. Rev. E 89 042134 | Quantum effects improve the energy efficiency of feedback control
[28] | Lin Z Y, Su S H, Chen J Y, Chen J C, and Santos J F G 2021 Phys. Rev. A 104 062210 | Suppressing coherence effects in quantum-measurement-based engines
[29] | Chand S, Dasgupta S, and Biswas A 2021 Phys. Rev. E 103 032144 | Finite-time performance of a single-ion quantum Otto engine
[30] | Myers N M, Peña F J, Negrete O, Vargas P, Chiara G D, and Deffner S 2022 New J. Phys. 24 025001 | Boosting engine performance with Bose–Einstein condensation
[31] | Gluza M, Sabino J, Ng N H Y, Vitagliano G, Pezzutto M, Omar Y, Mazets I, Huber M, Schmiedmayer J, and Eisert J 2021 PRX Quantum 2 030310 | Quantum Field Thermal Machines
[32] | Li J, Sherman E Y, and Ruschhaupt A 2022 Phys. Rev. A 106 L030201 | Quantum heat engine based on a spin-orbit- and Zeeman-coupled Bose-Einstein condensate
[33] | Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198 | Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor
[34] | Li Z, Wang J Z, and Fu L B 2013 Chin. Phys. Lett. 30 010301 | Double Barrier Resonant Tunneling in Spin-Orbit Coupled Bose—Einstein Condensates
[35] | Dai W S and Xie M 2004 Phys. Rev. E 70 016103 | Geometry effects in confined space
[36] | Wang J H and Mang Y L 2010 J. Phys. B 43 175301 | Finite-size scaling of the specific heat for a three-dimensional homogeneous weakly interacting Bose gas within a canonical statistics
[37] | Jiang J H, Entin-Wohlman O, and Imry Y 2012 Phys. Rev. B 85 075412 | Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
[38] | Su G Z, Chen L W, and Chen J C 2014 Phys. Lett. A 378 1992 | Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system
[39] | Izumida Y, Okuda K, Hernández A C, and Roco J M M 2013 Europhys. Lett. 101 10005 | Coefficient of performance under optimized figure of merit in minimally nonlinear irreversible refrigerator
[40] | Allahverdyan A E, Hovhannisyan K, and Mahler G 2010 Phys. Rev. E 81 051129 | Optimal refrigerator
[41] | Wang Y, Li M, Tu Z C, Hernández A C, and Roco J M M 2012 Phys. Rev. E 86 011127 | Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators
[42] | Hu Y, Wu F, Ma Y, He J, Wang J, Hernández A C, and Roco J M M 2013 Phys. Rev. E 88 062115 | Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation
[43] | Hernández A C, Medina A, and Roco J M M 2015 New J. Phys. 17 070511 | Time, entropy generation, and optimization in low-dissipation heat devices
[44] | Curzon F L and Ahlborn B 1975 Am. J. Phys. 43 22 | Efficiency of a Carnot engine at maximum power output
[45] | Luo X G, Liu N, and He J Z 2013 Phys. Rev. E 87 022139 | Optimum analysis of a Brownian refrigerator
[46] | Liu H G, He J Z, Wang J H 2023 Chin. Phys. B 32 030503 | Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
[47] | Yuan Y, Wang R, He J Z, Ma Y L, and Wang J H 2014 Phys. Rev. E 90 052151 | Coefficient of performance under maximum criterion in a two-level atomic system as a refrigerator
[48] | Romero-Rochı́n V 2005 Phys. Rev. Lett. 94 130601 | Equation of State of an Interacting Bose Gas Confined by a Harmonic Trap: The Role of the “Harmonic” Pressure
[49] | Grossmann S and Holthaus M 1995 Z. Naturforsch. A 50 921 | λ-Transition to the Bose-Einstein Condensate
[50] | Grossmann S and Holthaus M 1995 Phys. Lett. A 208 188 | On Bose-Einstein condensation in harmonic traps
[51] | See the Supplemental Material for the detailed derivations of main-text equations and supplemental evidence. |
[52] | Pathria R K and Beale P D 2011 Statistical Mechanics 3rd edn (New York: Academic) |
[53] | Quan H T 2009 Phys. Rev. E 79 041129 | Quantum thermodynamic cycles and quantum heat engines. II.
[54] | Perrot P 1998 A to Z of Thermodynamics (Oxford: Oxford University Press) |
[55] | Galve F, Pachon L A, and Zueco D 2010 Phys. Rev. Lett. 105 180501 | Bringing Entanglement to the High Temperature Limit