[1] | Kitaev A Y 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[2] | Freedman M, Kitaev A, Larsen M, and Wang Z 2003 Bull. Amer. Math. Soc. 40 31 | Topological quantum computation
[3] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[4] | Leinaas J M and Myrheim J 1977 Il Nuovo Cimento B (1971-1996) 37 1 | On the theory of identical particles
[5] | Fredenhagen K, Rehren K H, and Schroer B 1989 Commun. Math. Phys. 125 201 | Superselection sectors with braid group statistics and exchange algebras
[6] | Ivanov D A 2001 Phys. Rev. Lett. 86 268 | Non-Abelian Statistics of Half-Quantum Vortices in -Wave Superconductors
[7] | Read N and Green D 2000 Phys. Rev. B 61 10267 | Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
[8] | Kitaev A Y 2001 Phys. Usp. 44 131 | Unpaired Majorana fermions in quantum wires
[9] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 | Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
[10] | Sato M, Takahashi Y, and Fujimoto S 2009 Phys. Rev. Lett. 103 020401 | Non-Abelian Topological Order in -Wave Superfluids of Ultracold Fermionic Atoms
[11] | Sau J D, Lutchyn R M, Tewari S, and Sarma S D 2010 Phys. Rev. Lett. 104 040502 | Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures
[12] | Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001 | Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures
[13] | Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002 | Helical Liquids and Majorana Bound States in Quantum Wires
[14] | Alicea J 2010 Phys. Rev. B 81 125318 | Majorana fermions in a tunable semiconductor device
[15] | Alicea J 2012 Rep. Prog. Phys. 75 076501 | New directions in the pursuit of Majorana fermions in solid state systems
[16] | Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003 | Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
[17] | Deng M, Yu C, Huang G, Larsson M, Caroff P, and Xu H 2012 Nano Lett. 12 6414 | Anomalous Zero-Bias Conductance Peak in a Nb–InSb Nanowire–Nb Hybrid Device
[18] | Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B 87 241401 | Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover
[19] | Finck A D K, van Harlingen D J, Mohseni P K, Jung K, and Li X 2013 Phys. Rev. Lett. 110 126406 | Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device
[20] | Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602 | Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
[21] | Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C 2016 Nature 531 206 | Exponential protection of zero modes in Majorana islands
[22] | Deng M, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557 | Majorana bound state in a coupled quantum-dot hybrid-nanowire system
[23] | Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett. 116 257003 | Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor
[24] | Wang D F, Kong L Y, Fan P et al. 2018 Science 362 333 | Evidence for Majorana bound states in an iron-based superconductor
[25] | Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2019 Nat. Mater. 18 811 | Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te)
[26] | Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056 | Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor
[27] | Fornieri A, Whiticar A M, Setiawan F et al. 2019 Nature 569 89 | Evidence of topological superconductivity in planar Josephson junctions
[28] | Ren H C, Pientka F, Hart S et al. 2019 Nature 569 93 | Topological superconductivity in a phase-controlled Josephson junction
[29] | Chen C, Liu Q, Zhang T, Li D, Shen P, Dong X, Zhao Z X, Zhang T, and Feng D 2019 Chin. Phys. Lett. 36 057403 | Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li0.84 Fe0.16 )OHFeSe
[30] | Zhu S Y, Kong L Y, Cao L et al. 2020 Science 367 189 | Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor
[31] | Wang Z Y, Song H D, Pan D, Zhang Z T, Miao W T, Li R D, Cao Z, Zhang G, Liu L, Wen L J, Zhuo R, Liu D E, He K, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 129 167702 | Plateau Regions for Zero-Bias Peaks within 5% of the Quantized Conductance Value
[32] | Ménard G C, Anselmetti G L R, Martinez E A, Puglia D, Malinowski F K, Lee J S, Choi S, Pendharkar M, Palmstrøm C J, Flensberg K, Marcus C M, Casparis L, and Higginbotham A P 2020 Phys. Rev. Lett. 124 036802 | Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device
[33] | Puglia D, Martinez E A, Ménard G C, Pöschl A, Gronin S, Gardner G C, Kallaher R, Manfra M J, Marcus C M, Higginbotham A P, and Casparis L 2021 Phys. Rev. B 103 235201 | Closing of the induced gap in a hybrid superconductor-semiconductor nanowire
[34] | Wang J Y, van Loo N, Mazur G P, Levajac V, Malinowski F K, Lemang M, Borsoi F, Badawy G, Gazibegovic S, Bakkers E P A M, Quintero-Pérez M, Heedt S, and Kouwenhoven L P 2022 Phys. Rev. B 106 075306 | Parametric exploration of zero-energy modes in three-terminal InSb-Al nanowire devices
[35] | Aghaee M, Akkala A, Alam Z et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423 | InAs-Al hybrid devices passing the topological gap protocol
[36] | Pöschl A, Danilenko A, Sabonis D, Kristjuhan K, Lindemann T, Thomas C, Manfra M J, and Marcus C M 2022 Phys. Rev. B 106 L241301 | Nonlocal conductance spectroscopy of Andreev bound states in gate-defined InAs/Al nanowires
[37] | Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A, and Marcus C M 2023 Phys. Rev. Lett. 130 096202 | Local and Nonlocal Transport Spectroscopy in Planar Josephson Junctions
[38] | Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128 | Next steps of quantum transport in Majorana nanowire devices
[39] | Cao Z, Chen S, Zhang G, and Liu D E 2023 Sci. Chin. Phys. Mech. & Astron. 66 267003 | Recent progress on Majorana in semiconductor-superconductor heterostructures—engineering and detection
[40] | Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, and Beenakker C W J 2013 Phys. Rev. B 88 035121 | Flux-controlled quantum computation with Majorana fermions
[41] | Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X 6 031016 | Milestones Toward Majorana-Based Quantum Computing
[42] | Clarke D J, Sau J D, and Tewari S 2011 Phys. Rev. B 84 035120 | Majorana fermion exchange in quasi-one-dimensional networks
[43] | van Heck B, Akhmerov A, Hassler F, Burrello M, and Beenakker C 2012 New J. Phys. 14 035019 | Coulomb-assisted braiding of Majorana fermions in a Josephson junction array
[44] | Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B 95 235305 | Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes
[45] | Bell J S 1966 Rev. Mod. Phys. 38 447 | On the Problem of Hidden Variables in Quantum Mechanics
[46] | Clauser J F, Horne M A, Shimony A, and Holt R A 1969 Phys. Rev. Lett. 23 880 | Proposed Experiment to Test Local Hidden-Variable Theories
[47] | de Lange G, van Heck B, Bruno A, van Woerkom D J, Geresdi A, Plissard S R, Bakkers E P A M, Akhmerov A R, and DiCarlo L 2015 Phys. Rev. Lett. 115 127002 | Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements
[48] | Larsen T W, Petersson K D, Kuemmeth F, Jespersen T S, Krogstrup P, Nygård J, and Marcus C M 2015 Phys. Rev. Lett. 115 127001 | Semiconductor-Nanowire-Based Superconducting Qubit
[49] | Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L, and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004 | High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field
[50] | Hays M, de Lange G, Serniak K, van Woerkom D J, Bouman D, Krogstrup P, Nygård J, Geresdi A, and Devoret M H 2018 Phys. Rev. Lett. 121 047001 | Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction
[51] | Sabonis D, Erlandsson O, Kringhøj A, van Heck B, Larsen T W, Petkovic I, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 156804 | Destructive Little-Parks Effect in a Full-Shell Nanowire-Based Transmon
[52] | Kroll J, Borsoi F, van der Enden K, Uilhoorn W, de Jong D, Quintero-Pérez M, van Woerkom D, Bruno A, Plissard S, Car D, Bakkers E, Cassidy M, and Kouwenhoven L 2019 Phys. Rev. Appl. 11 064053 | Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments
[53] | Larsen T W, Gershenson M E, Casparis L, Kringhøj A, Pearson N J, McNeil R P G, Kuemmeth F, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 056801 | Parity-Protected Superconductor-Semiconductor Qubit
[54] | van Zanten D M T, Sabonis D, Suter J et al. 2020 Nat. Phys. 16 663 | Photon-assisted tunnelling of zero modes in a Majorana wire
[55] | Bohm D 1952 Phys. Rev. 85 166 | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I
[56] | Everett H 1957 Rev. Mod. Phys. 29 454 | "Relative State" Formulation of Quantum Mechanics
[57] | Aspect A, Dalibard J, and Roger G 1982 Phys. Rev. Lett. 49 1804 | Experimental Test of Bell's Inequalities Using Time- Varying Analyzers
[58] | Gisin N 1991 Phys. Lett. A 154 201 | Bell's inequality holds for all non-product states
[59] | Mermin N D 1993 Rev. Mod. Phys. 65 803 | Hidden variables and the two theorems of John Bell
[60] | Bassi A and Ghirardi G 2003 Phys. Rep. 379 257 | Dynamical reduction models
[61] | Aaronson S 2005 Phys. Rev. A 71 032325 | Quantum computing and hidden variables
[62] | Genovese M 2005 Phys. Rep. 413 319 | Research on hidden variable theories: A review of recent progresses
[63] | Leggett A J 2003 Found. Phys. 33 1469 | Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem
[64] | Spekkens R W 2007 Phys. Rev. A 75 032110 | Evidence for the epistemic view of quantum states: A toy theory
[65] | Augusiak R, Demianowicz M, and Acín A 2014 J. Phys. A 47 424002 | Local hidden–variable models for entangled quantum states
[66] | Weihs G, Jennewein T, Simon C, Weinfurter H, and Zeilinger A 1998 Phys. Rev. Lett. 81 5039 | Violation of Bell's Inequality under Strict Einstein Locality Conditions
[67] | Simon C and Irvine W T M 2003 Phys. Rev. Lett. 91 110405 | Robust Long-Distance Entanglement and a Loophole-Free Bell Test with Ions and Photons
[68] | García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R, and Grangier P 2004 Phys. Rev. Lett. 93 130409 | Proposal for a Loophole-Free Bell Test Using Homodyne Detection
[69] | Colbeck R and Renner R 2011 Nat. Commun. 2 411 | No extension of quantum theory can have improved predictive power
[70] | Dada A C, Leach J, Buller G S, Padgett M J, and Andersson E 2011 Nat. Phys. 7 677 | Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities
[71] | Hensen B, Bernien H, Dréau A E et al. 2015 Nature 526 682 | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
[72] | Hensen B, Kalb N, Blok M et al. 2016 Sci. Rep. 6 30289 | Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis
[73] | Rosenfeld W, Burchardt D, Garthoff R, Redeker K, Ortegel N, Rau M, and Weinfurter H 2017 Phys. Rev. Lett. 119 010402 | Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes
[74] | Chtchelkatchev N M, Blatter G, Lesovik G B, and Martin T 2002 Phys. Rev. B 66 161320 | Bell inequalities and entanglement in solid-state devices
[75] | Sauret O, Martin T, and Feinberg D 2005 Phys. Rev. B 72 024544 | Spin-current noise and Bell inequalities in a realistic superconductor-quantum dot entangler
[76] | Zhong Y P, Chang H S, Satzinger K, Chou M H, Bienfait A, Conner C R, Dumur É, Grebel J, Peairs G, Povey R et al. 2019 Nat. Phys. 15 741 | Violating Bell’s inequality with remotely connected superconducting qubits
[77] | Yao P and Hughes S 2009 Opt. Express 17 11505 | Macroscopic entanglement and violation of Bell’s inequalities between two spatially separated quantum dots in a planar photonic crystal system
[78] | Pusey M F, Barrett J, and Rudolph T 2012 Nat. Phys. 8 475 | On the reality of the quantum state
[79] | Barrett J 2007 Phys. Rev. A 75 032304 | Information processing in generalized probabilistic theories
[80] | Leggett A J 2008 Rep. Prog. Phys. 71 022001 | Realism and the physical world
[81] | Harrigan N and Spekkens R W 2010 Found. Phys. 40 125 | Einstein, Incompleteness, and the Epistemic View of Quantum States
[82] | Barnum H, Barrett J, Clark L O, Leifer M, Spekkens R, Stepanik N, Wilce A, and Wilke R 2010 New J. Phys. 12 033024 | Entropy and information causality in general probabilistic theories
[83] | Fuchs C A and Schack R 2013 Rev. Mod. Phys. 85 1693 | Quantum-Bayesian coherence
[84] | Disilvestro L and Markham D 2017 Phys. Rev. A 95 052324 | Quantum protocols within Spekkens' toy model
[85] | See the Supplemental Information for more details. |
[86] | Bravyi S and Kitaev A 2005 Phys. Rev. A 71 022316 | Universal quantum computation with ideal Clifford gates and noisy ancillas
[87] | Deng D L and Duan L M 2013 Phys. Rev. A 88 012323 | Fault-tolerant quantum random-number generator certified by Majorana fermions
[88] | Clarke D J, Sau J D, and Sarma S D 2016 Phys. Rev. X 6 021005 | A Practical Phase Gate for Producing Bell Violations in Majorana Wires
[89] | Romito A and Gefen Y 2017 Phys. Rev. Lett. 119 157702 | Ubiquitous Nonlocal Entanglement with Majorana Zero Modes