[1] | Perlmutter S et al. [Supernova Cosmology Project] 1999 Astrophys. J. 517 565 | Measurements of Ω and Λ from 42 High‐Redshift Supernovae
[2] | Riess A G et al. [Supernova Search Team] 1998 Astron. J. 116 1009 | Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
[3] | Tegmark M et al. [SDSS] 2004 Phys. Rev. D 69 103501 | Cosmological parameters from SDSS and WMAP
[4] | Seljak U et al. [SDSS] 2005 Phys. Rev. D 71 103515 | Cosmological parameter analysis including SDSS Ly forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy
[5] | Bennett C L et al. [WMAP] 2003 Astrophys. J. Suppl. 148 1 | First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Preliminary Maps and Basic Results
[6] | Spergel D N et al. [WMAP] 2007 Astrophys. J. Suppl. 170 377 | Three‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Implications for Cosmology
[7] | Spergel D N et al. [WMAP] 2003 Astrophys. J. Suppl. 148 175 | First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Determination of Cosmological Parameters
[8] | Ade P A R et al. [Planck] 2011 Astron. Astrophys. 536 A14 | Planck early results. XIV. ERCSC validation and extreme radio sources
[9] | Ade P A R et al. [Planck] 2011 Astron. Astrophys. 536 A1 | Planck early results. I. The Planck mission
[10] | Ade P A R et al. [Planck] 2011 Astron. Astrophys. 536 A2 | Planck early results. II. The thermal performance of Planck
[11] | Nojiri S and Odintsov S D 2006 Int. J. Geometr. Methods Mod. Phys. 04 115 | INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY
[12] | De Felice A and Tsujikawa S 2010 Living Rev. Relativ. 13 3 | f(R) Theories
[13] | Capozziello S and De Laurentis M 2011 Phys. Rep. 509 167 | Extended Theories of Gravity
[14] | Cai Y F, Capozziello S, De Laurentis M, and Saridakis E N 2016 Rept. Prog. Phys. 79 106901 | f ( T ) teleparallel gravity and cosmology
[15] | Carroll S M 2001 Living Rev. Relativ. 4 1 | The Cosmological Constant
[16] | Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559 | The cosmological constant and dark energy
[17] | Bartelmann M 2010 Rev. Mod. Phys. 82 331 | The dark Universe
[18] | Sahni V 2004 Lecture Notes in Physics (Berlin: Springer) vol 653 p 141 |
[19] | Copeland E J, Sami M, and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753 | DYNAMICS OF DARK ENERGY
[20] | Li M, Li X D, Wang S, and Wang Y 2011 Commun. Theor. Phys. 56 525 | Dark Energy
[21] | Li M, Li X D, Wang S, and Wang Y 2013 Front. Phys. 8 828 | Dark energy: A brief review
[22] | Frieman J, Turner M, and Huterer D 2008 Ann. Rev. Astron. Astrophys. 46 385 | Dark Energy and the Accelerating Universe
[23] | Straumann N 2006 Mod. Phys. Lett. A 21 1083 | DARK ENERGY: RECENT DEVELOPMENTS
[24] | Weinberg S 2000 arXiv: astro-ph/0005265 | Article identifier not recognized
[25] | Guo Z K and Zhang Y Z 2005 Phys. Rev. D 71 023501 | Interacting phantom energy
[26] | Guo Z K, Cai R G, and Zhang Y Z 2005 J. Cosmol. Astropart. Phys. 2005(05) 002 | Cosmological evolution of interacting phantom energy with dark matter
[27] | Guo Z K, Ohta N, and Tsujikawa S 2007 Phys. Rev. D 76 023508 | Probing the coupling between dark components of the universe
[28] | Yang T, Guo Z K, and Cai R G 2015 Phys. Rev. D 91 123533 | Reconstructing the interaction between dark energy and dark matter using Gaussian processes
[29] | Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406 | Cosmological consequences of a rolling homogeneous scalar field
[30] | Zlatev I, Wang L M, and Steinhardt P J 1999 Phys. Rev. Lett. 82 896 | Quintessence, Cosmic Coincidence, and the Cosmological Constant
[31] | Brax P and Martin J 2000 Phys. Rev. D 61 103502 | Robustness of quintessence
[32] | Barreiro T, Copeland E J, and Nunes N J 2000 Phys. Rev. D 61 127301 | Quintessence arising from exponential potentials
[33] | Garriga J and Mukhanov V F 1999 Phys. Lett. B 458 219 | Perturbations in k-inflation
[34] | Caldwell R R 2002 Phys. Lett. B 545 23 | A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state
[35] | Caldwell R R, Kamionkowski M, and Weinberg N N 2003 Phys. Rev. Lett. 91 071301 | Phantom Energy: Dark Energy with Causes a Cosmic Doomsday
[36] | Sol̀a J and Štefančić H 2005 Phys. Lett. B 624 147 | Effective equation of state for dark energy: Mimicking quintessence and phantom energy through a variable Λ
[37] | Roy N, Goswami S, and Das S 2022 Phys. Dark Univ. 36 101037 | Quintessence or phantom: Study of scalar field dark energy models through a general parametrization of the Hubble parameter
[38] | Yang W, Pan S, Di Valentino E, Saridakis E N, and Chakraborty S 2019 Phys. Rev. D 99 043543 | Observational constraints on one-parameter dynamical dark-energy parametrizations and the tension
[39] | Özer M and Taha M O 1987 Nucl. Phys. B 287 776 | A model of the universe free of cosmological problems
[40] | Abdel-Rahman A M M 1990 Gen. Rel. Gravit. 22 655 | A critical density cosmological model with varying gravitational and cosmological ?constants?
[41] | Vishwakarma R G, A, and Beesham A 1999 Phys. Rev. D 60 063507 | LRS Bianchi type-I models with a time-dependent cosmological “constant”
[42] | Vishwakarma R G 2001 Gen. Rel. Gravit. 33 1973 | Study of the Magnitude-Redshift Relation for Type Ia Supernovae in a Model Resulting from a Ricci-Symmetry
[43] | A and Prajapati S R 2011 Chin. Phys. Lett. 28 029803 | Friedman—Robertson—Walker Models with Late-Time Acceleration
[44] | Pacif S K J and A 2014 Eur. Phys. J. Plus 129 244 | On the simultaneous variation of some cosmological parameters in the presence of interacting dark energy
[45] | Mamon A A 2018 Mod. Phys. Lett. A 33 1850113 | A new parametrization for dark energy density and future deceleration
[46] | Rezaei M, Malekjani M, and Sola J 2019 Phys. Rev. D 100 023539 | Can dark energy be expressed as a power series of the Hubble parameter?
[47] | Alam U, Sahni V, Saini T D, and Starobinsky A A 2004 Mon. Not. Roy. Astron. Soc. 354 275 | Is there supernova evidence for dark energy metamorphosis?
[48] | Alam U, Sahni V, and Starobinsky A A 2004 J. Cosmol. Astropart. Phys. 2004(06) 008 | The case for dynamical dark energy revisited
[49] | Daly R A and Djorgovski S G 2003 Astrophys. J. 597 9 | A Model‐Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy
[50] | Daly R A and Djorgovski S G 2004 Astrophys. J. 612 652 | Direct Determination of the Kinematics of the Universe and Properties of the Dark Energy as Functions of Redshift
[51] | Gong Y G 2012 Int. J. Mod. Phys. D 14 599 | OBSERVATIONAL CONSTRAINTS ON DARK ENERGY MODEL
[52] | Jonsson J, Goobar A, Amanullah R, and Bergstrom L 2004 J. Cosmol. Astropart. Phys. 2004(09) 007 | No evidence for dark energy metamorphosis?
[53] | Alam U, Sahni V, Saini T D, and Starobinsky A A 2004 arXiv:astro-ph/0406672 [astro-ph] | Rejoinder to "No Evidence of Dark Energy Metamorphosis", astro-ph/0404468
[54] | Weller J and Albrecht A 2001 Phys. Rev. Lett. 86 1939 | Opportunities for Future Supernova Studies of Cosmic Acceleration
[55] | Huterer D and Turner M S 2001 Phys. Rev. D 64 123527 | Probing dark energy: Methods and strategies
[56] | Weller J and Albrecht A 2002 Phys. Rev. D 65 103512 | Future supernovae observations as a probe of dark energy
[57] | Astier P 2001 Phys. Lett. B 500 8 | Can luminosity distance measurements probe the equation of state of dark energy?
[58] | Chevallier M and Polarski D 2001 Int. J. Mod. Phys. D 10 213 | ACCELERATING UNIVERSES WITH SCALING DARK MATTER
[59] | Linder E V 2003 Phys. Rev. Lett. 90 091301 | Exploring the Expansion History of the Universe
[60] | Choudhury T R and Padmanabhan T 2005 Astron. Astrophys. 429 807 | Cosmological parameters from supernova observations: A critical comparison of three data sets
[61] | Feng B, Wang X L, and Zhang X M 2005 Phys. Lett. B 607 35 | Dark energy constraints from the cosmic age and supernova
[62] | Gong Y G 2005 Class. Quantum Grav. 22 2121 | Model-independent analysis of dark energy: supernova fitting result
[63] | Gong Y G and Zhang Y Z 2005 Phys. Rev. D 72 043518 | Probing the curvature and dark energy
[64] | Yang W, Pan S, Di Valentino E, and Saridakis E N 2019 Universe 5 219 | Observational Constraints on Dynamical Dark Energy with Pivoting Redshift
[65] | Escamilla L A, and Vazquez J A 2021 arXiv:2111.10457 [astro-ph.CO] | Model selection applied to non-parametric reconstructions of the Dark Energy
[66] | Jassal H K, Bagla J S, and Padmanabhan T 2005 Mon. Not. Roy. Astron. Soc. 356 L11 | WMAP constraints on low redshift evolution of dark energy
[67] | Feng C J, Shen X Y, Li P, and Li X Z 2012 J. Cosmol. Astropart. Phys. 2012(09) 023 | A new class of parametrization for dark energy without divergence
[68] | Perković D and Štefančić H 2020 Eur. Phys. J. C 80 629 | Barotropic fluid compatible parametrizations of dark energy
[69] | Pacif S K J 2020 Eur. Phys. J. Plus 135 792 | Dark energy models from a parametrization of H: a comprehensive analysis and observational constraints
[70] | Scolnic D M et al. [Pan-STARRS1] 2018 Astrophys. J. 859 101 | The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample
[71] | Betoule M et al. [SDSS] 2014 Astron. Astrophys. 568 A22 | Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
[72] | Gao C, Chen Y, and Zheng J 2020 Res. Astron. Astrophys. 20 151 | Investigating the relationship between cosmic curvature and dark energy models with the latest supernova sample
[73] | Xu T, Chen Y, Xu L, and Cao S 2022 Phys. Dark Univ. 36 101023 | Comparing the scalar-field dark energy models with recent observations
[74] | Aghanim N et al. [Planck] 2020 Astron. Astrophys. 641 A5 | Planck 2018 results
[75] | Beutler F, Blake C, Colless M, Jones D H, Staveley-Smith L, Campbell L, Parker Q, Saunders W, and Watson F 2011 Mon. Not. Roy. Astron. Soc. 416 3017 | The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant
[76] | Ross A J, Samushia L, Howlett C, Percival W J, Burden A M M 2015 Mon. Not. Roy. Astron. Soc. 449 835 | The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15
[77] | Chuang C H et al. [BOSS] 2017 Mon. Not. Roy. Astron. Soc. 471 2370 | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering – towards an accurate model
[78] | Sharov G S and Vasiliev V O 2018 Math. Model. Geom. 6 1 | How predictions of cosmological models depend on Hubble parameter data sets
[79] | Akaike H 1974 IEEE Trans. Automat. Control 19 716 | A new look at the statistical model identification
[80] | Schwarz G 1978 Ann. Statist. 6 461 | Estimating the Dimension of a Model
[81] | Guo Z K, Piao Y S, Zhang X M, and Zhang Y Z 2005 Phys. Lett. B 608 177 | Cosmological evolution of a quintom model of dark energy
[82] | Guo Z K, Piao Y S, Zhang X M, and Zhang Y Z 2006 Phys. Rev. D 74 127304 | Two-field quintom models in the plane
[83] | Kass R E and Raftery A E 1995 J. Am. Statist. Assoc. 90 773 | Bayes Factors
[84] | Xu Y Y and Zhang X 2016 Eur. Phys. J. C 76 588 | Comparison of dark energy models after Planck 2015
[85] | Rezaei M 2019 Mon. Not. Roy. Astron. Soc. 485 550 | Observational constraints on the oscillating dark energy cosmologies
[86] | Jones D O, Scolnic D M, Riess A G et al. 2018 Astrophys. J. 857 51 | Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters
[87] | Di Valentino E, Gariazzo S, Mena O, and Vagnozzi S 2020 J. Cosmol. Astropart. Phys. 2020(07) 045 | Soundness of dark energy properties
[88] | Alam U, Sahni V, Saini T D, and Starobinsky A A 2003 Mon. Not. Roy. Astron. Soc. 344 1057 | Exploring the expanding Universe and dark energy using the statefinder diagnostic
[89] | Sahni V, Saini T D, Starobinsky A A, and Alam U 2003 JETP Lett. 77 201 | Statefinder—A new geometrical diagnostic of dark energy
[90] | Sahni V, Shafieloo A, and Starobinsky A A 2008 Phys. Rev. D 78 103502 | Two new diagnostics of dark energy
[91] | Zunckel C and Clarkson C 2008 Phys. Rev. Lett. 101 181301 | Consistency Tests for the Cosmological Constant
[92] | Starobinsky A A 1998 JETP Lett. 68 757 | How to determine an effective potential for a variable cosmological term
[93] | Wang L M and Steinhardt P J 1998 Astrophys. J. 508 483 | Cluster Abundance Constraints for Cosmological Models with a Time‐varying, Spatially Inhomogeneous Energy Component with Negative Pressure
[94] | Gong Y G, Ishak M, and Wang A Z 2009 Phys. Rev. D 80 023002 | Growth factor parametrization in curved space
[95] | Peebles P J E 1980 The Whole Truth: A Cosmologist's Reflections on the Search for Objective Reality (New Jersey: Princeton University Press) |
[96] | Fry J N 1985 Phys. Lett. B 158 211 | Dynamical measures of density in exotic cosmologies
[97] | Silveira V and Waga I 1994 Phys. Rev. D 50 4890 | Decaying Λ cosmologies and power spectrum
[98] | Gong Y G 2008 Phys. Rev. D 78 123010 | Growth factor parametrization and modified gravity
[99] | Gannouji R and Polarski D 2008 J. Cosmol. Astropart. Phys. 2008(05) 018 | The growth of matter perturbations in some scalar–tensor DE models
[100] | Nesseris S and Perivolaropoulos L 2008 Phys. Rev. D 77 023504 | Testing with the growth function : Current constraints
[101] | Polarski D, Starobinsky A A, and Giacomini H 2016 J. Cosmol. Astropart. Phys. 2016(12) 037 | When is the growth index constant?
[102] | Ivezić Ž, Kahn S M, Tyson J A et al. [LSST] 2019 Astrophys. J. 873 111 | LSST: From Science Drivers to Reference Design and Anticipated Data Products
[103] | Wu P, Yu H W, and Fu X 2009 J. Cosmol. Astropart. Phys. 2009(06) 019 | A parametrization for the growth index of linear matter perturbations
[104] | Jing J L and Chen S B 2010 Phys. Lett. B 685 185 | Improved parametrization of the growth index for dark energy and DGP models
[105] | Bueno B A, Garcia-Bellido J, and Sapone D 2011 J. Cosmol. Astropart. Phys. 2011(10) 010 | A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey
[106] | Gupta G, Sen S, and Sen A A 2012 J. Cosmol. Astropart. Phys. 2012(04) 028 | GCG parametrization for growth function and current constraints
[107] | Mehrabi A 2018 Phys. Rev. D 97 083522 | Growth of perturbations in dark energy parametrization scenarios
[108] | Velásquez-Toribio A M and Fabris J C 2020 Eur. Phys. J. C 80 1210 | The growth factor parametrization versus numerical solutions in flat and non-flat dark energy models
[109] | Aghanim N, Akrami Y, Ashdown M et al. [Planck] 2020 Astron. Astrophys. 641 A6 [Erratum: Astron. Astrophys. 652 C4] |
[110] | Douspis M, Salvati L, and Aghanim N 2018 Proc. Sci. 335 037 | On the Tension between Large Scale Structures and Cosmic Microwave Background
[111] | Poulin V, Bernal J L, Kovetz E, and Kamionkowski M 2022 arXiv:2209.06217 [astro-ph.CO] | The Sigma-8 Tension is a Drag
[112] | Escudero H G, Kuo J L, Keeley R E, and Abazajian K N 2022 arXiv:2208.14435 [astro-ph.CO] | Early or phantom dark energy, self-interacting, extra, or massive neutrinos, primordial magnetic fields, or a curved universe: An exploration of possible solutions to the $H_0$ and $σ_8$ problems