[1] | Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915 | Skyrmion Lattice in a Chiral Magnet
[2] | Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, and Tokura Y 2011 Nat. Mater. 10 106 | Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
[3] | Ryu K S, Thomas L, Yang S H, and Parkin S 2013 Nat. Nanotechnol. 8 527 | Chiral spin torque at magnetic domain walls
[4] | Fert A, Cros V, and Sampaio J 2013 Nat. Nanotechnol. 8 152 | Skyrmions on the track
[5] | Shen L, Li X, Xia J, Qiu L, Zhang X, Tretiakov O A, Ezawa M, and Zhou Y 2020 Phys. Rev. B 102 104427 | Dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields
[6] | Göbel B, Mook A, Henk J, Mertig I, and Tretiakov O A 2019 Phys. Rev. B 99 060407(R) | Magnetic bimerons as skyrmion analogues in in-plane magnets
[7] | Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899 | Topological properties and dynamics of magnetic skyrmions
[8] | Upadhyaya P, Yu G, Amiri P K, and Wang K 2015 Phys. Rev. B 92 134411 | Electric-field guiding of magnetic skyrmions
[9] | Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G, and Givord D 2017 Nano Lett. 17 3006 |
[10] | Yu X, Morikawa D, Nakajima K, Shibata K, Kanazawa N, Arima T, Nagaosa N, and Tokura Y 2020 Sci. Adv. 6 eaaz9744 | Motion tracking of 80-nm-size skyrmions upon directional current injections
[11] | Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J, and Zhao Y 2021 Nat. Commun. 12 322 | Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling
[12] | Wei W S, He Z D, Qu Z, and Du H F 2021 Rare Met. 40 3076 | Dzyaloshinsky–Moriya interaction (DMI)-induced magnetic skyrmion materials
[13] | Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovács A, Zang J D, Tian M L, Zhang Y H, Du H F, and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205 | Direct Imaging of a Zero-Field Target Skyrmion and Its Polarity Switch in a Chiral Magnetic Nanodisk
[14] | Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, and Böni P 2009 Phys. Rev. Lett. 102 186602 | Topological Hall Effect in the Phase of MnSi
[15] | Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, and Fert A 2016 Nat. Nanotechnol. 11 444 | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
[16] | Boulle O, Vogel J, Yang H, Pizzini S, de Chaves D S, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Stashkevich Y R A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, and Gaudin G 2016 Nat. Nanotechnol. 11 449 | Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
[17] | Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031 | Magnetic skyrmions: advances in physics and potential applications
[18] | Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[19] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[20] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[21] | Han M G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, and Zhu Y 2019 Nano Lett. 19 7859 | Topological Magnetic-Spin Textures in Two-Dimensional van der Waals Cr2 Ge2 Te6
[22] | Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, and Wang W 2020 Nano Lett. 20 868 | Observation of Magnetic Skyrmion Bubbles in a van der Waals Ferromagnet Fe3 GeTe2
[23] | Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Wong K, Fang C, Wan C, Han X et al. 2020 Nat. Commun. 11 3860 | Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure
[24] | Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, and Bellaiche L 2020 Phys. Rev. B 101 060404(R) | Topological spin texture in Janus monolayers of the chromium trihalides Cr(I,
[25] | Zhang Y, Xu C, Chen P, Nahas Y, Prokhorenko S, and Bellaiche L 2020 Phys. Rev. B 102 241107(R) | Emergence of skyrmionium in a two-dimensional Janus monolayer
[26] | Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, and Yang H X 2020 Phys. Rev. B 101 184401 | Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states
[27] | Cui Q R, Liang J H, Shao Z J, Cui P, and Yang H X 2020 Phys. Rev. B 102 094425 | Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides
[28] | Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, and Nan C 2014 Adv. Mater. 26 7091 | Non-Volatile 180° Magnetization Reversal by an Electric Field in Multiferroic Heterostructures
[29] | Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C, and Kim J 2020 Nature 578 75 | Heterogeneous integration of single-crystalline complex-oxide membranes
[30] | Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P, Valvidares M, Chen Z, Reddy P, Muller D A, Ross C A, and Beach G S D 2020 Nat. Commun. 11 1090 | Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides
[31] | Ren Y, Li Q, Wan W, Liu Y, and Ge Y F 2020 Phys. Rev. B 101 134421 | High-temperature ferromagnetic semiconductors: Janus monolayer vanadium trihalides
[32] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[33] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[34] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[35] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[36] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[37] | Sui X, Hu T, Wang J, Gu B L, Duan W, and Miao M S 2017 Phys. Rev. B 96 041410(R) | Voltage-controllable colossal magnetocrystalline anisotropy in single-layer transition metal dichalcogenides
[38] | See Supplemental Material for (1) the calculations of Heisenberg exchange parameters $J$ and (2) the calculations of DMI $d$. |
[39] | Wang Z, Liang J, Cui Q, Ren W, and Yang H 2021 J. Magn. Magn. Mater. 535 168068 |
[40] | Bruno P 1989 Phys. Rev. B 39 865 | Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers
[41] | Goodenough J B 1955 Phys. Rev. 100 564 | Theory of the Role of Covalence in the Perovskite-Type Manganites
[42] | Kanamori J 1959 J. Phys. Chem. Solids 10 87 | Superexchange interaction and symmetry properties of electron orbitals
[43] | Anderson P W 1959 Phys. Rev. 115 2 | New Approach to the Theory of Superexchange Interactions
[44] | Yang H X, Thiaville A, Rohart S, Fert A, and Chshiev M 2015 Phys. Rev. Lett. 115 267210 | Anatomy of Dzyaloshinskii-Moriya Interaction at Interfaces
[45] | Fert A and Levy P M 1980 Phys. Rev. Lett. 44 1538 | Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses