[1] | Syôzi I 1951 Prog. Theor. Phys. 6 306 | Statistics of Kagome Lattice
[2] | Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135 | Competing electronic orders on kagome lattices at van Hove filling
[3] | Mizoguchi T and Hatsugai Y 2020 Phys. Rev. B 101 235125 | Systematic construction of topological flat-band models by molecular-orbital representation
[4] | Yamada M G, Soejima T, Tsuji N, Hirai D, Dincă M, and Aoki H 2016 Phys. Rev. B 94 081102(R) | First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks
[5] | Ezawa M 2018 Phys. Rev. Lett. 120 026801 | Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices
[6] | Xue H R, Yang Y H, Gao F, Chong Y D, and Zhang B L 2019 Nat. Mater. 18 108 | Acoustic higher-order topological insulator on a kagome lattice
[7] | Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638 | Massive Dirac fermions in a ferromagnetic kagome metal
[8] | Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valenti R 2014 Nat. Commun. 5 4261 | Theoretical prediction of a strongly correlated Dirac metal
[9] | Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwei S T B, and Felser C 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[10] | Imai T, Nytko E A, Bartlett B M, Shores M P, and Nocera D G 2008 Phys. Rev. Lett. 100 077203 | , , and NMR in the Kagome Lattice
[11] | Huang L and Lu H Y 2020 Phys. Rev. B 102 155140 | Protracted Kondo screening and kagome bands in the heavy-fermion metal
[12] | Nikolaev S A, Mazurenko V V, Tsirlin A A, and Mazurenko V G 2016 Phys. Rev. B 94 144412 | First-principles study of the magnetic ground state and magnetization process of the kagome francisites
[13] | Bauer B, Cincio L, Keller B P, Dolfi M, Vidal G, Trebst S, and Ludwig A W W 2014 Nat. Commun. 5 5137 | Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator
[14] | Wu T and Guo J 2019 IEEE Electron Device Lett. 40 1973 |
[15] | Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G, and Lee Y S 2015 Phys. Rev. Lett. 115 147201 | Topological Magnon Bands in a Kagome Lattice Ferromagnet
[16] | Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X, and Cai J M 2019 Chin. Phys. B 28 037101 |
[17] | Baidya S, Mallik A V, Bhattacharjee S, and Saha-Dasgupta T 2020 Phys. Rev. Lett. 125 026401 | Interplay of Magnetism and Topological Superconductivity in Bilayer Kagome Metals
[18] | Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502 | Doped kagome system as exotic superconductor
[19] | Yu S L and Li J X 2012 Phys. Rev. B 85 144402 | Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
[20] | Pyon S, Kudo K, Matsumura J, Ishii H, Matsuo G, Nohara M, Hojo H, Oka K, Azuma M, Garlea V O, Kodama K, and Shamoto S 2014 J. Phys. Soc. Jpn. 83 093706 | Superconductivity in Noncentrosymmetric Iridium Silicide Li2 IrSi3
[21] | Lu H Y, Wang N N, Geng L, Chen S, Yang Y, Lu W J, Wang W S, and Sun J 2015 Europhys. Lett. 110 17003 | Novel electronic and phonon-related properties of the newly discovered silicide superconductor Li2 IrSi3
[22] | Philip S S, Yang J, Louca D, Rosa P F S, Thompson J D, and Page K L 2021 Phys. Rev. B 104 104503 | Bismuth kagome sublattice distortions by quenching and flux pinning in superconducting
[23] | Li S, Zeng B, Wan X G, Tao J, Han F, Yang H, Wang Z H, and Wen H H 2011 Phys. Rev. B 84 214527 | Anomalous properties in the normal and superconducting states of LaRu Si
[24] | Li B X, Li S, and Wen H H 2016 Phys. Rev. B 94 094523 | Chemical doping effect in the superconductor with a kagome lattice
[25] | Mielke C, I I I, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z, and Guguchia Z 2021 Phys. Rev. Mater. 5 034803 | Nodeless kagome superconductivity in
[26] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[27] | Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401 | Charge Density Waves and Electronic Properties of Superconducting Kagome Metals
[28] | Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S T S, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353 | Unconventional chiral charge order in kagome superconductor KV3Sb5
[29] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 | Superconductivity in the kagome metal
[30] | Zhao J Z, Wu W K, Wang Y L, and Yang S Y A 2021 Phys. Rev. B 103 L241117 | Electronic correlations in the normal state of the kagome superconductor
[31] | Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 Phys. Rev. X 11 031026 | Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor
[32] | Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Lei H C, Zhang S T S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D, and Hasan M Z 2021 Phys. Rev. B 104 035131 | Intrinsic nature of chiral charge order in the kagome superconductor
[33] | Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda A A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[34] | Chen P J and Jeng H T 2016 Sci. Rep. 6 23151 | High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations
[35] | Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443 | Two-Dimensional Boron Monolayer Sheets
[36] | Gao M, Li Q Z, Yan X W, and Wang J 2017 Phys. Rev. B 95 024505 | Prediction of phonon-mediated superconductivity in borophene
[37] | Zhao Y C, Zeng S M, Lian C, Dai Z H, Meng S, and Ni J 2018 Phys. Rev. B 98 134514 | Multigap anisotropic superconductivity in borophenes
[38] | Penev E S, Kutana A, and Yakobson B I 2016 Nano Lett. 16 2522 | Can Two-Dimensional Boron Superconduct?
[39] | Qu Z Y, Han F J J, Yu T, Xu M L, Li Y W, and Yang G C 2020 Phys. Rev. B 102 075431 | Boron kagome-layer induced intrinsic superconductivity in a monolayer with a high critical temperature
[40] | Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y L, Zhang S B, and Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093 | A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice
[41] | Bo T, Liu P F, Yan L, and Wang B T 2020 Phys. Rev. Mater. 4 114802 | Electron-phonon coupling superconductivity in two-dimensional orthorhombic and hexagonal
[42] | Profeta G, Calandra M, and Mauri F 2012 Nat. Phys. 8 131 | Phonon-mediated superconductivity in graphene by lithium deposition
[43] | Lu H Y, Yang Y, Hao L, Wang W S, Geng L, Zheng M M, Li Y, Jiao N, Zhang P, and Ting C S 2020 Phys. Rev. B 101 214514 | Phonon-mediated superconductivity in aluminum-deposited graphene
[44] | Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002 | First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor
[45] | Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milosevic M V 2019 Phys. Rev. Lett. 123 077001 | Hydrogen-Induced High-Temperature Superconductivity in Two-Dimensional Materials: The Example of Hydrogenated Monolayer
[46] | Li Y P, Yang L, Liu H D, Jiao N, Ni M Y, Hao N, Lu H Y, and Zhang P 2022 Phys. Chem. Chem. Phys. 24 9256 | Phonon-mediated superconductivity in two-dimensional hydrogenated phosphorus carbide: HPC3
[47] | Jiao N, Liu H D, Yang L, Li Y P, Zheng M M, Lu H Y, and Zhang P 2022 Europhys. Lett. 138 46002 |
[48] | Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 J. Am. Chem. Soc. 137 2757 | Two-Dimensional Cu2 Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding
[49] | Feng B J, Fu B T, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y, and Matsuda I 2017 Nat. Commun. 8 1007 | Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si
[50] | Yang L M, Popov I A, Frauenheim T, Boldyrev A I, Heine T, Bačić V, and Ganz E 2015 Phys. Chem. Chem. Phys. 17 26043 | Revealing unusual chemical bonding in planar hyper-coordinate Ni2 Ge and quasi-planar Ni2 Si two-dimensional crystals
[51] | Yang L M, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 Phys. Chem. Chem. Phys. 17 17545 | Post-anti-van't Hoff-Le Bel motif in atomically thin germanium–copper alloy film
[52] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 | Topological insulator on the kagome lattice
[53] | Zhang S H, Kang M, Huang H Q, Jiang W, Ni X J, Kang L, Zhang S P, Xu H X, Liu Z, and Liu F 2019 Phys. Rev. B 99 100404(R) | Kagome bands disguised in a coloring-triangle lattice
[54] | Kang M G, Ye L, Fang S, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwic A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Brink J V D, Richter M, Ghimire M P, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163 | Dirac fermions and flat bands in the ideal kagome metal FeSn
[55] | Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401 | Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of ( , Ho)
[56] | Sales B C, Meier W R, May A F, Xing J, Yan J Q, Gao S, Liu Y H, Stone M B, Christianson A D, Zhang Q, and McGuire M A 2021 Phys. Rev. Mater. 5 044202 | Tuning the flat bands of the kagome metal CoSn with Fe, In, or Ni doping
[57] | Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137 | Charge order and superconductivity in kagome materials
[58] | Efetov D K and Kim P 2010 Phys. Rev. Lett. 105 256805 | Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities