Fe1+yTexSe1x: A Delicate and Tunable Majorana Material

    Show all affliationsShow less
  • Received Date: October 29, 2022
  • Published Date: December 31, 2022
  • We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1x with angle-resolved photoemission spectroscopy. Furthermore, we found that excess Fe (y>0) inhibits the topological band inversion in Fe1+yTexSe1x, which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1x with excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.
  • Article Text

  • [1]
    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, and Shik S 2018 Science 360 182

    Google Scholar

    [2]
    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, and Gao H J 2018 Science 362 333

    Google Scholar

    [3]
    Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J, and Ding H 2020 Nat. Commun. 11 5688

    Google Scholar

    [4]
    Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, and Gao H J 2021 Nat. Commun. 12 1348

    Google Scholar

    [5]
    Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J, and Ding H 2021 Nat. Commun. 12 4146

    Google Scholar

    [6]
    Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook J S, Wang Z Q, and Gao H J 2022 Nature 606 890

    Google Scholar

    [7]
    Liu W Y, Hu Q X, Wang X C, Zhong Y G, Yang F Z, Kong L Y, Cao L, Li G, Okazaki K, Kondo T, Jin C Q, Zhang F C, Xu J P, Gao H J, and Ding H 2022 Quantum Front 1 20

    Google Scholar

    [8]
    Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, and Fang Z 2015 Phys. Rev. B 92 115119

    Google Scholar

    [9]
    Zhang P, Wang Z J, Wu X X et al.. 2019 Nat. Phys. 15 41

    Google Scholar

    [10]
    Lohani H, Hazra T, Ribak A, Nitzav Y, Fu H X, Yan B H, Randeria M, and Kanigel A 2020 Phys. Rev. B 101 245146

    Google Scholar

    [11]
    Peng X L, Li Y, Wu X X, Deng H B, Shi X, Fan W H, Li M, Huang Y B, Qian T, Richard P, Hu J P, Pan S H, Mao H Q, Sun Y J, and Ding H 2019 Phys. Rev. B 100 155134

    Google Scholar

    [12]
    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2019 Nat. Mater. 18 811

    Google Scholar

    [13]
    Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y, and Wen H H 2018 Nat. Commun. 9 970

    Google Scholar

    [14]
    Chiu C K, Machida T, Huang Y Y, Hanaguri T, and Zhang F C 2020 Sci. Adv. 6 eaay0443

    Google Scholar

    [15]
    Pathak V, Plugge S, and Franz M 2021 Ann. Phys. 435 168431

    Google Scholar

    [16]
    Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181

    Google Scholar

    [17]
    Li Y M, Zaki N, Garlea V O, Savici A T, Fobes D, Xu Z J, Camino F, Petrovic C, Gu G D, Johnson P D, Tranquada J M, and Zaliznyak I A 2021 Nat. Mater. 20 1221

    Google Scholar

    [18]
    Singh U R, White S C, Schmaus S, Tsurkan V, Loidl A, Deisenhofer J, and Wahl P 2013 Phys. Rev. B 88 155124

    Google Scholar

    [19]
    Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, and Pan S H 2015 Nat. Phys. 11 543

    Google Scholar

    [20]
    Li H, Ma M W, Liu S B, Zhou F, and Dong X L 2020 Chin. Phys. B 29 127404

    Google Scholar

    [21]
    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, and Takahashi T 2014 Phys. Rev. Lett. 113 237001

    Google Scholar

    [22]
    Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P, and Ding H 2015 Phys. Rev. B 91 214503

    Google Scholar

    [23]
    Yin Z P, Haule K, and Kotliar G 2011 Nat. Mater. 10 932

    Google Scholar

    [24]
    Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D, and Mozharivskyj Y 2009 Phys. Rev. B 79 094521

    Google Scholar

    [25]
    Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, and Takahashi T 2017 Phys. Rev. B 95 224507

    Google Scholar

    [26]
    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H, Shibauchi T, and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309

    Google Scholar

    [27]
    Zaki N, Gu G D, Tsvelik A, Wu C J, and Johnson P D 2021 Proc. Natl. Acad. Sci. USA 118 e2007241118

    Google Scholar

    [28]
    Rameau J D, Zaki N, Gu G D, Johnson P D, and Weinert M 2019 Phys. Rev. B 99 205117

    Google Scholar

  • Related Articles

    [1]JIANG Zhi-Wei. A New Model for Quark Mass Matrix [J]. Chin. Phys. Lett., 2011, 28(6): 061201. doi: 10.1088/0256-307X/28/6/061201
    [2]QIAN Yi-Bin, REN Zhong-Zhou, NI Dong-Dong, SHENG Zong-Qiang. Half-Lives of Proton Emitters With a Deformed Density-Dependent Model [J]. Chin. Phys. Lett., 2010, 27(11): 112301. doi: 10.1088/0256-307X/27/11/112301
    [3]CHEN Ling-Zhi, PANG Hou-Rong, HUANG Hong-Xia, PING Jia-Lun, WANG Fan. Subtraction of Spurious Centre-of-Mass Motion in Quark Delocalization and Colour Screening Model [J]. Chin. Phys. Lett., 2007, 24(9): 2529-2532.
    [4]YUE Chong-Xing, WANG Lei, WANG Li-Na, ZHANG Yan-Ming. Littlest Higgs Model and Spin Correlation of Top Quark Production at High Energy Linear e+ e- Colliders [J]. Chin. Phys. Lett., 2006, 23(9): 2379-2382.
    [5]ZONG Hong-Shi, WU Xiao-Hua, HOU Feng-Yao, ZHAO En-Guang. Explicit and Dynamical Chiral Symmetry Breaking in an Effective Quark-Quark Interaction Model [J]. Chin. Phys. Lett., 2004, 21(1): 43-46.
    [6]JIANG Wei-zhou, ZHU Zhi-yuan, QIU Xi-jun. Relativistic Density-Dependent Hartree Approach for Nuclear Matter in the Chiral-Symmetry-Breaking Model [J]. Chin. Phys. Lett., 1996, 13(6): 416-419.
    [7]ZHU Wei, XU Zaixin. Nuclear Gluon Density in the Constituent Quark Model [J]. Chin. Phys. Lett., 1993, 10(10): 588-590.
    [8]LIU JuePing, LIU DunHuan. Quark Mass Corrections to the QCD Finite Energy Sum Rules for the O++ scalar Glueball [J]. Chin. Phys. Lett., 1991, 8(11): 551-554.
    [9]ZHANG Lin. THREE-LOOP BETA-FUNCTIONS FOR THE BOSONIC NON-LINEAR SIGMA MODEL WITH A WESS-ZUMINO-WITTEN TERM [J]. Chin. Phys. Lett., 1989, 6(6): 245-248.
    [10]DING Xiaonan, SHEN Pengnian, ZHANG Zongye, YU Youwen. NUCLEON-NUCLEON INTERACTION WITH A FLAT BOTTOM LINEAR CONFINEMENT POTENTIAL IN THE QUARK MODEL [J]. Chin. Phys. Lett., 1988, 5(7): 297-300.

Catalog

    Article views (193) PDF downloads (191) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return