[1] | Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808 | Topological Aspect and Quantum Magnetoresistance of
[2] | Liu H L, Shi X, Xu F F, Zhang L F, Zhang W Q, Chen L D, Li Q, Uher C, Day T, and Snyder G J 2012 Nat. Mater. 11 422 | Copper ion liquid-like thermoelectrics
[3] | Nguyen M C, Choi J, Zhao X, Wang C Z, Zhang Z, and Ho K M 2013 Phys. Rev. Lett. 111 165502 | New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: and
[4] | Nethravathi C, Rajamathi C R, Rajamathi M, Maki R, Mori T, Golberg D, and Bando Y 2014 J. Mater. Chem. A 2 985 | Synthesis and thermoelectric behaviour of copper telluride nanosheets
[5] | Kikuchi H, Iyetomi H, and Hasegawa A 1997 J. Phys.: Condens.: Matter 9 6031 | The p - d hybridization in the electronic structure of
[6] | Byeon D, Sobota R, Kévin D, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, and Takeuchi T 2019 Nat. Commun. 10 72 |
[7] | He Y, Zhang T, Shi X, Wei S, and Chen L 2015 NPG Asia Mater. 7 e210 | High thermoelectric performance in copper telluride
[8] | Kikuchi H, Iyetomi H, and Hasegawa A 1998 J. Phys.: Condens. Matter 10 11439 | Insight into the origin of superionic conductivity from electronic structure theory
[9] | Vouroutzis N and Manolikas C 1989 Phys. Status Solidi A 111 491 | Phase Transformations in Cuprous Telluride
[10] | Vouroutzis N, Frangis N, and Manolikaset C 2005 Phys. Status Solidi A 202 271 | The double modulation superstructure of the room temperature stable phase of stoichiometric Cu2 Te
[11] | Asadov Y G, Rustamova L V, Gasimov G B, Jafarov K M, and Babajev A G 1992 Phase Transit. 38 247 | Structural phase transitions in Cu 2– x Te crystals ( x = 0.00, 0.10, 0.15, 0.20, 0.25)
[12] | Nowotny H 1946 Int. J. Mater. Res. 37 40 |
[13] | Baranova R V, Avilov A S, and Pinsker Z G 1973 Kristallografiya 18 1169 |
[14] | Matar S, Weihrich R, Kurowski D, and Pfitzner A 2004 Solid State Sci. 6 15 | DFT calculations on the electronic structure of CuTe2 and Cu7Te4
[15] | Yu L, Luo K, Chen S, and Duan C G 2015 CrystE NgComm. 17 2878 | Cu-deficiency induced structural transition of Cu2−x Te
[16] | Sirusi A A, Page A, Uher C, and Ross Jr J H 2017 J. Phys. Chem. Solids 106 52 | NMR study of vacancy and structure-induced changes in Cu2-xTe
[17] | Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X, and Gao H J 2020 Chin. Phys. B 29 018104 | Epitaxial growth and air-stability of monolayer Cu2 Te*
[18] | Tong Y F, Bouaziz M, Zhang W, Obeid B, Loncle A, Oughaddou H, Enriquez H, Chaouchi K, Esaulov V, Chen Z S, Xiong H Q, Cheng Y C, and Bendounan A 2020 2D Mater. 7 035010 |
[19] | Liu S, Xia W, Huang K, Pei D, Deng T, Liang A J, Jiang J, Yang H F, Zhang J, Zheng H J, Chen Y J, Yang L X, Guo Y F, Wang M X, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 115127 | Measurement of electronic structure and surface reconstruction in the superionic
[20] | Feng J Q, Gao H Y, Li T, Tan X, Xu P, Li M L, He L, and Ma D L 2021 ACS Nano 15 3415 | Lattice-Matched Metal–Semiconductor Heterointerface in Monolayer Cu2 Te
[21] | Zhang X, Gu Q Q, Sun H, and Luo T 2020 Phys. Rev. B 102 035125 | Eightfold fermionic excitation in a charge density wave compound
[22] | Zhang Y G, Sa B H, Zhou J, and Sun Z M 2014 Comput. Mater. Sci. 81 163 | First principles investigation of the structure and electronic properties of Cu2Te
[23] | Sirusi A A, Ballikaya B, Chen J, Uher C, and Ross J H 2016 J. Phys. Chem. C 120 14549 | Band Ordering and Dynamics of Cu 2– x Te and Cu1.98 Ag0.2 Te
[24] | Ma Y D, Kou L Z, Dai Y, and Heine T 2016 Phys. Rev. B 93 235451 | Two-dimensional topological insulators in group-11 chalcogenide compounds:
[25] | Zhao X X and Mi Y M 2021 Phys. Chem. Chem. Phys. 23 3116 | Topological semimetal state with triply degenerate nodal points in a stable Cu2 Te structure
[26] | Sirusi A A, Page A, Steinke L, Aronson M C, Uher C, and Ross J H 2018 AIP Adv. 8 055135 | Unconventional large linear magnetoresistance in Cu 2− x Te
[27] | Zhang K, Liu X, Zhang H, Deng K, Yan M, Yao W, Zheng M, Schwier E F, Shimada K, Denlinger J D, Wu Y, Duan W, and Zhou S 2018 Phys. Rev. Lett. 121 206402 | Evidence for a Quasi-One-Dimensional Charge Density Wave in CuTe by Angle-Resolved Photoemission Spectroscopy
[28] | Kuo C N, Huang R Y, Kuo Y K, and Lue C S 2020 Phys. Rev. B 102 155137 | Transport and thermal behavior of the charge density wave phase transition in CuTe
[29] | Sinchenko A A, Monceau P, and Crozes T 2012 Phys. Rev. Lett. 108 046402 | Transverse Conductivity in the Sliding Charge-Density-Wave State of
[30] | Mutka H, Zuppiroli L, M, and Bourgoin J C 1981 Phys. Rev. B 23 10 | Analysis of weak neutral currents in hydrogenic ions
[31] | Chen H, Li Z, Guo L, and Chen X 2017 Europhys. Lett. 117 27009 | Anisotropic magneto-transport and magnetic properties of low-temperature phase of TaTe2
[32] | Kolincio K K, Roman M, and Klimczuk T 2019 Phys. Rev. B 99 205127 | Charge density wave and large nonsaturating magnetoresistance in and
[33] | Tian L, Quinn G, Mazhar N A, Minhao L, Cava R J, and Ong N P 2015 Nat. Mater. 14 280 | Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2
[34] | Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, and Yan B 2015 Nat. Phys. 11 645 | Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP
[35] | Zhang X, Luo T C, and Hu X Y 2019 Chin. Phys. Lett. 36 057402 | Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe2
[36] | Zhao Y F, Liu H W, and Zhang C L 2015 Phys. Rev. X 5 031037 | Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal
[37] | Wang J and DaSilva A M 2011 Phys. Rev. B 83 245438 | Evidence for electron-electron interaction in topological insulator thin films
[38] | Abrikosov A A 2000 Europhys. Lett. 49 789 | Quantum linear magnetoresistance
[39] | Sinchenko A A, Grigoriev P D, Lejay P, and Monceau P 2017 Phys. Rev. B 96 245129 | Linear magnetoresistance in the charge density wave state of quasi-two-dimensional rare-earth tritellurides
[40] | Frolov A V, Orlov A P, Grigoriev P D, Zverev V N, Sinchenko A A, and Monceau P 2018 JETP Lett. 107 488 | Magnetoresistance of a Two-Dimensional TbTe3 Conductor in the Sliding Charge-Density Wave Regime
[41] | Feng Y J, Wang Y S, Silevitch D M, Yan J Q, and Rosenbaum T F 2019 Proc. Natl. Acad. Sci. USA 116 11201 | Linear magnetoresistance in the low-field limit in density-wave materials
[42] | Peierls R E 1930 Ann. Phys. (Leipzig) 396 121 | Zur Theorie der elektrischen und thermischen Leitfähigkeit von Metallen
[43] | Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138 | Strong-Coupling Theory of Charge-Density-Wave Transitions
[44] | Gor'kov L P 2012 Phys. Rev. B 85 165142 | Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides
[45] | Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami P, Said A H, and Reznik D 2011 Phys. Rev. Lett. 107 107403 | Extended Phonon Collapse and the Origin of the Charge-Density Wave in
[46] | Eiter H M, Lavagnini M, Hackl R, Nowadnick E A, Kemper A F, Devereaux T P, Chu J H, Analytis J G, Fisher I R, and Degiorgi L 2013 Proc. Natl. Acad. Sci. USA 110 64 | Alternative route to charge density wave formation in multiband systems
[47] | Gleason S L, Gim Y, Byrum T, Kogar A, Abbamonte P, Fradkin E, MacDougall G J, Van Harlingen D J, Zhu X, Petrovic C, and Cooper S L 2015 Phys. Rev. B 91 155124 | Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in : Raman scattering studies
[48] | Tan P H 2012 Nat. Mater. 11 294 | The shear mode of multilayer graphene
[49] | Puretzky A A, Liang L, Li X, Xiao K, Wang K, Masoud M S, Basile L, Idrobo J C, Sumpter B G, Meunier V, and Geohegan D B 2015 ACS Nano 9 6 6333 | Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations
[50] | Snow C S, Karpus J F, Chiang T C, Kidd T E, and Cooper S L 2003 Phys. Rev. Lett. 91 136402 | Quantum Melting of the Charge-Density-Wave State in
[51] | Rui H, Okamoto J, Ye Z, Ye G, Anderson H, Dai X, Wu X, Hu J, Liu Y, Lu W, Sun Y, Pasupathy A N, and Tsen A W 2016 Phys. Rev. B 94 201108(R) | Distinct surface and bulk charge density waves in ultrathin
[52] | Measson M A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, and Sacuto A 2014 Phys. Rev. B 89 060503(R) | Amplitude Higgs mode in the superconductor
[53] | Zhu X D, Ning W, Li L, Ling L, Zhang R, Zhang J, Wang K L, Pi L, Ma Y, Du H, Tian M, Sun Y, Petrovic C, and Zhang Y 2016 Sci. Rep. 6 26974 | Superconductivity and Charge Density Wave in ZrTe3−xSex