[1] | Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, and Sheng P 2000 Science 289 1734 | Locally Resonant Sonic Materials
[2] | Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780 | Controlling Electromagnetic Fields
[3] | Cummer S A, Christensen J, and Alu A 2016 Nat. Rev. Mater. 1 16001 | Controlling sound with acoustic metamaterials
[4] | Ma G C and Sheng P 2016 Sci. Adv. 2 e1501595 | Acoustic metamaterials: From local resonances to broad horizons
[5] | Assouar B, Liang B, Wu Y, Li Y, Cheng J C, and Jing Y 2018 Nat. Rev. Mater. 3 460 | Acoustic metasurfaces
[6] | Aizpurua J, Hanarp P, Sutherland D S, Kall M, Bryant G W, F J, and de Abajo G 2003 Phys. Rev. Lett. 90 057401 | Optical Properties of Gold Nanorings
[7] | Tribelsky M I and Lykyanchuk B S 2006 Phys. Rev. Lett. 97 263902 | Anomalous Light Scattering by Small Particles
[8] | Leonhardt U 2006 Science 312 1777 | Optical Conformal Mapping
[9] | Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, and Smith D R 2006 Science 314 977 | Metamaterial Electromagnetic Cloak at Microwave Frequencies
[10] | Zhu X F, Liang B, Kan W W, Zou X Y, and Cheng J S 2011 Phys. Rev. Lett. 106 014301 | Acoustic Cloaking by a Superlens with Single-Negative Materials
[11] | Zhang S, Xia C G, and Fang N 2011 Phys. Rev. Lett. 106 024301 | Broadband Acoustic Cloak for Ultrasound Waves
[12] | Chen Y Y, Liu H J, Reilly M, Bae H, and Yu M 2014 Nat. Commun. 5 5247 | Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
[13] | Fleury R, Sounas D, and Alu A 2015 Nat. Commun. 6 5905 | An invisible acoustic sensor based on parity-time symmetry
[14] | Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, and Liu X J 2017 Appl. Phys. Lett. 110 123507 | Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure
[15] | Bogue R 2017 Sens. Rev. 37 305 | Sensing with metamaterials: a review of recent developments
[16] | Fan X D, Zhu Y F, Liang B, Cheng J C, and Zhang L K 2018 Phys. Rev. Appl. 9 034035 | Converting a Monopole Emission into a Dipole Using a Subwavelength Structure
[17] | Landi M, Zhao J J, Prather W E, Wu Y, and Zhang L K 2018 Phys. Rev. Lett. 120 114301 | Acoustic Purcell Effect for Enhanced Emission
[18] | Liu F M, Zhang S, Luo L C, Li W P, Wang Z Y, and Ke M Z 2019 Phys. Rev. Appl. 12 064063 | Superscattering of Sound by a Deep-Subwavelength Solid Mazelike Rod
[19] | Luo J, Li X, Zhang X Y, Guo J J, Liu W, Lai Y, Zhan Y H, and Huang M 2021 Opt. Express 29 10527 | Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials
[20] | Peurifoy J, Shen Y C, Jing L, Yang Y, Cano-Renteria F, DeLacy B G, Joannopoulos J D, Tegmark M, and Soljacic M 2018 Sci. Adv. 4 eaar4206 | Nanophotonic particle simulation and inverse design using artificial neural networks
[21] | So S, Mun J, and Rho J 2019 ACS Appl. Mater. Interfaces 11 24264 | Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core–Shell Nanoparticles
[22] | Liu Q S, Hang R L, Song H H, and Li Z 2018 IEEE Trans. Geosci. Remote Sens. 56 117 | Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification
[23] | Orazbayev B and Fleury R 2020 Phys. Rev. X 10 031029 | Far-Field Subwavelength Acoustic Imaging by Deep Learning
[24] | Qian C, Zheng B, Shen Y C, Jing L, Li E P, Shen L, and Chen H S 2020 Nat. Photon. 14 383 | Deep-learning-enabled self-adaptive microwave cloak without human intervention
[25] | Luo Y T, Li P Q, Li D T, Peng Y G, Geng Z G, Xie S H, Li Y, Alu A, Zhu J, and Zhu X F 2020 Research 2020 8757403 |
[26] | Liu D J, Tan Y X, Khoram E F, and Yu Z F 2018 ACS Photon. 5 1365 | Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
[27] | Ahmed W W, Farhat M, Zhang X L, and Wu Y 2021 Phys. Rev. Res. 3 013142 | Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak