[1] | Savit R 1980 Rev. Mod. Phys. 52 453 | Duality in field theory and statistical systems
[2] | Drühl K and Wagner H 1982 Ann. Phys. (N.Y.) 141 225 | Algebraic formulation of duality transformations for abelian lattice models
[3] | Son D T 2015 Phys. Rev. X 5 031027 | Is the Composite Fermion a Dirac Particle?
[4] | Kramers H A and Wannier G H 1941 Phys. Rev. 60 252 | Statistics of the Two-Dimensional Ferromagnet. Part I
[5] | Kadanoff L P and Ceva H 1971 Phys. Rev. B 3 3918 | Determination of an Operator Algebra for the Two-Dimensional Ising Model
[6] | Fradkin E and Susskind L 1978 Phys. Rev. D 17 2637 | Order and disorder in gauge systems and magnets
[7] | Zhang L 2019 Phys. Rev. Lett. 123 230601 | Universal Thermodynamic Signature of Self-Dual Quantum Critical Points
[8] | Zhu L J, Garst M, Rosch A, and Si Q M 2003 Phys. Rev. Lett. 91 066404 | Universally Diverging Grüneisen Parameter and the Magnetocaloric Effect Close to Quantum Critical Points
[9] | Wu J, Zhu L, and Si Q 2018 Phys. Rev. B 97 245127 | Crossovers and critical scaling in the one-dimensional transverse-field Ising model
[10] | Wang Z, Lorenz T, Gorbunov D I, Cong P T, Kohama Y, Niesen S, Breunig O, Engelmayer J, Herman A, Wu J, Kindo K, Wosnitza J, Zherlitsyn S, and Loidl A 2018 Phys. Rev. Lett. 120 207205 | Quantum Criticality of an Ising-like Spin- Antiferromagnetic Chain in a Transverse Magnetic Field
[11] | Pfeuty P 1970 Ann. Phys. (N.Y.) 57 79 | The one-dimensional Ising model with a transverse field
[12] | Zhang G and Song Z 2015 Phys. Rev. Lett. 115 177204 | Topological Characterization of Extended Quantum Ising Models
[13] | Barber M N 1983 Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J L (London: Academic Press) vol 8 |
[14] | Binder K 1983 Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J L (London: Academic Press) vol 8 |