[1] | Feynman R P 1982 Int. J. Theor. Phys. 21 467 | Simulating physics with computers
[2] | Abrams D S and Lloyd S 1997 Phys. Rev. Lett. 79 2586 | Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
[3] | Buluta I and Nori F 2009 Science 326 108 | Quantum Simulators
[4] | Trabesinger A 2012 Nat. Phys. 8 263 | Quantum simulation
[5] | Reiher M, Wiebe N, Svore K M, Wecker D, and Troyer M 2017 Proc. Natl. Acad. Sci. USA 114 7555 | Elucidating reaction mechanisms on quantum computers
[6] | Aspuru-Guzik A, Lindh R, and Reiher M 2018 ACS Cent. Sci. 4 144 | The Matter Simulation (R)evolution
[7] | Cao Y, Romero J, and Aspuru-Guzik A 2018 IBM J. Res. Dev. 62 6:1 | Potential of quantum computing for drug discovery
[8] | Babbush R, Wiebe N, McClean J, McClain J, Neven H, and Chan G L 2018 Phys. Rev. X 8 011044 | Low-Depth Quantum Simulation of Materials
[9] | Abrams D S and Lloyd S 1999 Phys. Rev. Lett. 83 5162 | Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors
[10] | Babbush R, McClean J, Wecker D, Aspuru-Guzik A, and Wiebe N 2015 Phys. Rev. A 91 022311 | Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation
[11] | Berry D W, Gidney C, Motta M, McClean J R, and Babbush R 2019 Quantum 3 208 | Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization
[12] | Yung M H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A, and Solano E 2015 Sci. Rep. 4 3589 | From transistor to trapped-ion computers for quantum chemistry
[13] | McClean J R, Romero J, Babbush R, and Aspuru-Guzik A 2016 New J. Phys. 18 023023 | The theory of variational hybrid quantum-classical algorithms
[14] | Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, and Gambetta J M 2017 Nature 549 242 | Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
[15] | McArdle S, Jones T, Endo S, Li Y, Benjamin S C, and Yuan X 2019 npj Quantum Inf. 5 75 | Variational ansatz-based quantum simulation of imaginary time evolution
[16] | Grimsley H R, Economou S E, Barnes E, and Mayhall N J 2019 Nat. Commun. 10 3007 | An adaptive variational algorithm for exact molecular simulations on a quantum computer
[17] | Wu J X and Hsieh T H 2019 Phys. Rev. Lett. 123 220502 | Variational Thermal Quantum Simulation via Thermofield Double States
[18] | Takeshita T, Rubin N C, Jiang Z, Lee E, Babbush R, and McClean J R 2020 Phys. Rev. X 10 011004 | Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources
[19] | Nakanishi K M, Mitarai K, and Fujii K 2019 Phys. Rev. Res. 1 033062 | Subspace-search variational quantum eigensolver for excited states
[20] | Higgott O, Wang D, and Brierley S 2019 Quantum 3 156 | Variational Quantum Computation of Excited States
[21] | Preskill J 2018 Quantum 2 79 | Quantum Computing in the NISQ era and beyond
[22] | Siringo F and Marotta L 2005 Eur. Phys. J. C 44 293 | A variational method from the variance of energy
[23] | Zhang F, Gomes N, Yao Y, Orth P P, and Iadecola T 2021 Phys. Rev. B 104 075159 |
[24] | Zhang D B, Yuan Z H, and Yin T 2020 arXiv:2006.15781 [quant-ph] | Variational quantum eigensolvers by variance minimization
[25] | Chertkov E and Clark B K 2018 Phys. Rev. X 8 031029 | Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions
[26] | Bairey E, Arad I, and Lindner N H 2019 Phys. Rev. Lett. 122 020504 | Learning a Local Hamiltonian from Local Measurements
[27] | Qi X L and Ranard D 2019 Quantum 3 159 | Determining a local Hamiltonian from a single eigenstate
[28] | Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, and Zoller P 2019 Nature 569 355 | Self-verifying variational quantum simulation of lattice models
[29] | Farhi E, Goldstone J, Gutmann S, and Sipser M 2000 arXiv:0001106 [quant-ph] | Article identifier not recognized
[30] | Garcia-Saez A and Latorre J 2018 arXiv:1806.02287 [quant-ph] | Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers
[31] | Matsuura S, Yamazaki T, Senicourt V, Huntington L, and Zaribafiyan A 2020 New J. Phys. 22 053023 | VanQver: the variational and adiabatically navigated quantum eigensolver
[32] | Yuan Z H, Yin T, and Zhang D B 2021 Phys. Rev. A 103 012413 | Hybrid quantum-classical algorithms for solving quantum chemistry in Hamiltonian–wave-function space
[33] | Sweke R, Wilde F, Meyer J, Schuld M, Faehrmann P K, Meynard-Piganeau B, and Eisert J 2020 Quantum 4 314 | Stochastic gradient descent for hybrid quantum-classical optimization
[34] | Li J, Yang X, Peng X, and Sun C P 2017 Phys. Rev. Lett. 118 150503 | Hybrid Quantum-Classical Approach to Quantum Optimal Control
[35] | Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504 | Quantum Machine Learning in Feature Hilbert Spaces
[36] | McClean J R, Boixo S, Smelyanskiy V N, Babbush R, and Neven H 2018 Nat. Commun. 9 4812 | Barren plateaus in quantum neural network training landscapes
[37] | Supplementary Material, which includes Refs. [38,39]. |
[38] | Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger A T, and Coles P J 2021 Phys. Rev. X 11 041011 | Absence of Barren Plateaus in Quantum Convolutional Neural Networks
[39] | Cerezo M, Sone A, Volkoff T, Cincio L, and Coles P J 2021 Nat. Commun. 12 1791 | Cost function dependent barren plateaus in shallow parametrized quantum circuits
[40] | Farhi E, Goldstone J, and Gutmann S 2014 arXiv: 1411.4028 [quant-ph] | A Quantum Approximate Optimization Algorithm
[41] | Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B, and Yuen H 2020 PRX Quantum 1 020319 | Exploring Entanglement and Optimization within the Hamiltonian Variational Ansatz
[42] | Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, García-Martín D, Garcia-Saez A, Latorre J I, and Carrazza S 2021 Quantum Sci. Technol. 7 015018 | Qibo: a framework for quantum simulation with hardware acceleration