[1] | Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320 | Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
[2] | Wallraff A, Schuster D, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin S M, and Schoelkopf R J 2004 Nature 431 162 | Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
[3] | Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, and Martinis J M 2014 Nature 508 500 | Superconducting quantum circuits at the surface code threshold for fault tolerance
[4] | Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P V, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J R, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J C, Quintana C, Rieffel E G, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Neven H, and Martinis J M 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[5] | Wu Y L, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, and Pan J W 2021 Phys. Rev. Lett. 127 180501 | Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
[6] | Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X, and Pan J W 2021 Science 372 948 | Quantum walks on a programmable two-dimensional 62-qubit superconducting processor
[7] | Majer J, Chow J M, Gambetta J M, Koch J, Johnson B, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Nature 449 443 | Coupling superconducting qubits via a cavity bus
[8] | Sillanpää M A, Park J I, and Simmonds R W 2007 Nature 449 438 | Coherent quantum state storage and transfer between two phase qubits via a resonant cavity
[9] | Filipp S, Göppl M, Fink J M, Baur M, Bianchetti R, Steffen L, and Wallraff A 2011 Phys. Rev. A 83 063827 | Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics
[10] | Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, O'Malley P, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, and Martinis J M 2012 Nat. Phys. 8 719 | Computing prime factors with a Josephson phase qubit quantum processor
[11] | Takita M, Cross A W, Córcoles A D, Chow J M, and Gambetta J M 2017 Phys. Rev. Lett. 119 180501 | Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits
[12] | Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S, and Pan J W 2017 Phys. Rev. Lett. 119 180511 | 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit
[13] | Cai H, Liu Q C, Zhao C H, Zhang Y S, Liu J S, and Chen W 2018 Chin. Phys. B 27 084207 | Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
[14] | Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, and Zhu S Y 2019 Science 365 574 | Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits
[15] | Li H K, Li K M, Dong H, Guo Q J, Liu W X, Wang Z, Wang H H, and Zheng D N 2019 Chin. Phys. B 28 080305 | Tunable coupling between Xmon qubit and coplanar waveguide resonator*
[16] | Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, and Martinis J M 2014 Phys. Rev. Lett. 113 220502 | Qubit Architecture with High Coherence and Fast Tunable Coupling
[17] | Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062 | Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates
[18] | Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F, and Yu D 2020 Phys. Rev. Lett. 125 240503 | High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits
[19] | Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, and Fan H 2018 Phys. Rev. Lett. 120 050507 | Emulating Many-Body Localization with a Superconducting Quantum Processor
[20] | Zhu Q L, Cao S R, Chen F S, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Wu Y, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Lu C Y, Peng C Z, Zhu X, and Pan J W 2022 Sci. Bull. 67 240 | Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
[21] | Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502 | Controlling the Spontaneous Emission of a Superconducting Transmon Qubit
[22] | Bourassa J, Beaudoin F, Gambetta J M, and Blais A 2012 Phys. Rev. A 86 013814 | Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon
[23] | Nigg S E, Paik H, Vlastakis B, Kirchmair G, Shankar S, Frunzio L, Devoret M H, Schoelkopf R J, and Girvin S M 2012 Phys. Rev. Lett. 108 240502 | Black-Box Superconducting Circuit Quantization
[24] | Solgun F, Abraham D W, and DiVincenzo D P 2014 Phys. Rev. B 90 134504 | Blackbox quantization of superconducting circuits using exact impedance synthesis
[25] | Gely M F, Parra-Rodriguez A, Bothner D, Blanter Y M, Bosman S J, Solano E, and Steele G A 2017 Phys. Rev. B 95 245115 | Convergence of the multimode quantum Rabi model of circuit quantum electrodynamics
[26] | Parra-Rodriguez A, Rico E, Solano E, and Egusquiza I L 2018 Quantum Sci. Technol. 3 024012 | Quantum networks in divergence-free circuit QED
[27] | Minev Z K, Leghtas Z, Mundhada S O, Christakis L, Pop I M, and Devoret M H 2021 npj Quantum Inf. 7 131 | Energy-participation quantization of Josephson circuits
[28] | Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, and Wallraff A 2010 Phys. Rev. Lett. 104 100504 | Cavity Quantum Electrodynamics with Separate Photon Storage and Qubit Readout Modes
[29] | Sundaresan N M, Liu Y, Sadri D, Szőcs L J, Underwood D L, Malekakhlagh M, Türeci H E, and Houck A A 2015 Phys. Rev. X 5 021035 | Beyond Strong Coupling in a Multimode Cavity
[30] | Bosman S J, Gely M F, Singh V, Bruno A, Bothner D, and Steele G A 2017 npj Quantum Inf. 3 46 | Multi-mode ultra-strong coupling in circuit quantum electrodynamics
[31] | Wang H, Zhuravel A P, Indrajeet S, Taketani B G, Hutchings M D, Hao Y, Rouxinol F, Wilhelm F K, LaHaye M D, Ustinov A V, and Plourde B L T 2019 Phys. Rev. Appl. 11 054062 | Mode Structure in Superconducting Metamaterial Transmission-Line Resonators
[32] | Chakram S, Oriani A E, Naik R K, Dixit A V, He K, Agrawal A, Kwon H, and Schuster D I 2021 Phys. Rev. Lett. 127 107701 | Seamless High- Microwave Cavities for Multimode Circuit Quantum Electrodynamics
[33] | McKay D C, Naik R, Reinhold P, Bishop L S, and Schuster D I 2015 Phys. Rev. Lett. 114 080501 | High-Contrast Qubit Interactions Using Multimode Cavity QED
[34] | Naik R K, Leung N, Chakram S, Groszkowski P, Lu Y, Earnest N, McKay D C, Koch J, and Schuster D I 2017 Nat. Commun. 8 1904 | Random access quantum information processors using multimode circuit quantum electrodynamics
[35] | Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 | Circuit quantum electrodynamics
[36] | Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 | Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED
[37] | Johansson J R, Nation P D, and Nori F 2012 Comput. Phys. Commun. 183 1760 | QuTiP: An open-source Python framework for the dynamics of open quantum systems
[38] | Johansson J R, Nation P D, and Nori F 2013 Comput. Phys. Commun. 184 1234 | QuTiP 2: A Python framework for the dynamics of open quantum systems
[39] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[40] | Koch J, Yu T M, Gambetta J M, Houck A, Schuster D, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319 | Charge-insensitive qubit design derived from the Cooper pair box
[41] | Numerical verification of this extrapolation is given by Fig. S1 in the Supplementary Material. |
[42] | Fowler A G, Mariantoni M, Martinis J M, and Cleland A N 2012 Phys. Rev. A 86 032324 | Surface codes: Towards practical large-scale quantum computation
[43] | Nielsen M A 2002 Phys. Lett. A 303 249 | A simple formula for the average gate fidelity of a quantum dynamical operation
[44] | Korotkov A N 2013 arXiv:1309.6405 [quant-ph] | Error matrices in quantum process tomography
[45] | Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, and Sun L 2020 Phys. Rev. Appl. 14 024070 | Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit
[46] | Purcell E M 1995 Spontaneous Emission Probabilities at Radio Frequencies, in Confined Electrons and Photons: New Physics and Applications, edited by Burstein E and Weisbuch C (Boston, MA: Springer) NATO ASI Series vol 340 p 839 |
[47] | Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L, and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110 | Fast reset and suppressing spontaneous emission of a superconducting qubit
[48] | See Eq. (S1) in the Supplementary Material. |
[49] | Kwon S, Tomonaga A, Lakshmi B G, Devitt S J, and Tsai J S 2021 J. Appl. Phys. 129 041102 | Gate-based superconducting quantum computing
[50] | See Sec. S3 in the Supplementary Material. |
[51] | Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, and Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369 | Superconducting Qubits: Current State of Play
[52] | See Sec. S4 in the Supplementary Material. |
[53] | DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, and Schoelkopf R J 2009 Nature 460 240 | Demonstration of two-qubit algorithms with a superconducting quantum processor
[54] | Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H, and Yu Y 2020 Phys. Rev. Lett. 125 200503 | High-Contrast Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity
[55] | Zhao P, Lan D, Xu P, Xue G, Blank M, Tan X, Yu H, and Yu Y 2021 Phys. Rev. Appl. 16 024037 | Suppression of Static Interaction in an All-Transmon Quantum Processor
[56] | Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, and Glaser S J 2005 J. Magn. Reson. 172 296 | Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
[57] | Müller M M, Reich D M, Murphy M, Yuan H, Vala J, Whaley K B, Calarco T, and Koch C P 2011 Phys. Rev. A 84 042315 | Optimizing entangling quantum gates for physical systems
[58] | Rowland B and Jones J A 2012 Philos. Trans. R. Soc. A 370 4636 | Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities
[59] | Riviello G, Tibbetts K M, Brif C, Long R, Wu R B, Ho T S, and Rabitz H 2015 Phys. Rev. A 91 043401 | Searching for quantum optimal controls under severe constraints
[60] | Li J, Yang X, Peng X, and Sun C P 2017 Phys. Rev. Lett. 118 150503 | Hybrid Quantum-Classical Approach to Quantum Optimal Control
[61] | Abdelhafez M, Baker B, Gyenis A, Mundada P, Houck A A, Schuster D, and Koch J 2020 Phys. Rev. A 101 022321 | Universal gates for protected superconducting qubits using optimal control