Loading [MathJax]/jax/output/SVG/jax.js

Finite Capacitive Response at the Quantum Hall Plateau

  • Received Date: May 10, 2022
  • Published Date: August 31, 2022
  • We study ultra-high-mobility two-dimensional (2D) electron/hole systems with high precision capacitance measurement. It is found that the capacitance charge appears only at the fringe of the gate at high magnetic field when the 2D conductivity decreases significantly. At integer quantum Hall effects, the capacitance vanishes and forms a plateau at high temperatures T300 mK, which surprisingly disappears at T100 mK. This anomalous behavior is likely a manifestation that dilute particles/vacancies in the top-most Landau level form Wigner crystals, which have finite compressibility and can host polarization current.
  • Article Text

  • [1]
    Prange R E and Girvin S M 1987 The Quantum Hall Effect New York: Springer

    Google Scholar

    [2]
    Sarma S D and Pinczuk A 1997 Perspectives in Quantum Hall Effects New York: Wiley

    Google Scholar

    [3]
    Jain J K 2007 Composite Fermions Cambridge: Cambridge University Press

    Google Scholar

    [4]
    Jiang H W, Willett R L, Stormer H L, Tsui D C, Pfeiffer L N, and West K W 1990 Phys. Rev. Lett. 65 633

    Google Scholar

    [5]
    Goldman V J, Santos M, Shayegan M, and Cunningham J E 1990 Phys. Rev. Lett. 65 2189

    Google Scholar

    [6]
    See articles by Fertig H A and by Shayegan M in Ref.[2].

    Google Scholar

    [7]
    Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, and West K W 2003 Phys. Rev. Lett. 91 016801

    Google Scholar

    [8]
    Liu Y, Pappas C G, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2012 Phys. Rev. Lett. 109 036801

    Google Scholar

    [9]
    Hatke A T, Liu Y, Magill B A, Moon B H, Engel L W, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2014 Nat. Commun. 5 4154

    Google Scholar

    [10]
    Myers S A, Huang H, Pfeiffer L N, West K W, and Csáthy G A 2021 Phys. Rev. B 104 045311

    Google Scholar

    [11]
    Kaplit M and Zemel J N 1968 Phys. Rev. Lett. 21 212

    Google Scholar

    [12]
    Voshchenkov A M and Zemel J N 1974 Phys. Rev. B 9 4410

    Google Scholar

    [13]
    Smith T P, Goldberg B B, Stiles P J, and Heiblum M 1985 Phys. Rev. B 32 2696

    Google Scholar

    [14]
    Mosser V, Weiss D, Klitzing K, Ploog K, and Weimann G 1986 Solid State Commun. 58 5

    Google Scholar

    [15]
    Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W, and West K W 1992 Phys. Rev. Lett. 68 3088

    Google Scholar

    [16]
    Smith T P, Wang W I, and Stiles P J 1986 Phys. Rev. B 34 2995

    Google Scholar

    [17]
    Yang M J, Yang C H, Bennett B R, and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613

    Google Scholar

    [18]
    Eisenstein J P, Pfeiffer L N, and West K W 1994 Phys. Rev. B 50 1760

    Google Scholar

    [19]
    Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, and Young A F 2017 Nature 549 360

    Google Scholar

    [20]
    Irie H, Akiho T, and Muraki K 2019 Appl. Phys. Express 12 063004

    Google Scholar

    [21]
    Eisenstein J P, Pfeiffer L N, and West K W 1992 Phys. Rev. Lett. 68 674

    Google Scholar

    [22]
    Deng H, Pfeiffer L N, West K W, Baldwin K W, Engel L W, and Shayegan M 2019 Phys. Rev. Lett. 122 116601

    Google Scholar

    [23]
    Jo J, Garcia E A, Abkemeier K M, Santos M B, and Shayegan M 1993 Phys. Rev. B 47 4056

    Google Scholar

    [24]
    Zibrov A A, Rao P, Kometter C, Spanton E M, Li J I A, Dean C R, Taniguchi T, Watanabe K, Serbyn M, and Young A F 2018 Phys. Rev. Lett. 121 167601

    Google Scholar

    [25]
    Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, and Ashoori R C 2019 Phys. Rev. Lett. 123 046601

    Google Scholar

    [26]
    Zhao L, Lin W, Fan X, Song Y, Lu H, and Liu Y 2022 Rev. Sci. Instrum. 93 053910

    Google Scholar

    [27]
    In samples A, B and C, our measured capacitance approaches a constant value 60 fF when the particles form incompressible integer quantum Hall liquid. This is likely the parasitic capacitance CP induced by the bonding wires, gates, etc. In sample D, CP is reduced to 15 fF because we add one impedance matching network at the input of the bridge at the sample stage. We have subtracted CP in all figures.

    Google Scholar

  • Related Articles

    [1]Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures [J]. Chin. Phys. Lett., 2020, 37(7): 077301. doi: 10.1088/0256-307X/37/7/077301
    [2]M. R. Setare, D. Jahani. Quantum Hall Effect and Different Zero-Energy Modes of Graphene [J]. Chin. Phys. Lett., 2011, 28(9): 097302. doi: 10.1088/0256-307X/28/9/097302
    [3]HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge [J]. Chin. Phys. Lett., 2010, 27(6): 067304. doi: 10.1088/0256-307X/27/6/067304
    [4]LV Wei-Guo, CHU Zhao-Tan, ZHAO Xiao-Qing, FAN Yu-Xiu, SONG Ruo-Long, HAN Wei. Simulation of Electromagnetic Wave Logging Response in Deviated Wells Based on Vector Finite Element Method [J]. Chin. Phys. Lett., 2009, 26(1): 014102. doi: 10.1088/0256-307X/26/1/014102
    [5]TU Tao, ZHAO Yong-Jie, HAO Xiao-Jie, WANG Cheng-You, GUO Guang-Can, GUO Guo-Ping. Localization Exponent for the Second Landau Level in the Quantum Hall Effect [J]. Chin. Phys. Lett., 2008, 25(3): 1083-1086.
    [6]TU Tao, ZHAO Yong-Jie, GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions [J]. Chin. Phys. Lett., 2007, 24(5): 1346-1349.
    [7]SHU Qiang, LIN Yao-Wang, XING Xiao-Dong, YAO Jiang-Hong, PI Biao, SHU Yong-Chun, WANG Zhan-Guo, XU Jing-Jun. Effect of Small-Angle Scattering on the Integer Quantum Hall Plateau [J]. Chin. Phys. Lett., 2006, 23(2): 436-438.
    [8]DUAN Yi-Shi, ZHANG Xiu-Ming, TIAN Miao. The Branch Process of Skyrmions in the Fractional Quantum Hall Effect [J]. Chin. Phys. Lett., 2005, 22(8): 2047-2051.
    [9]CHEN Yingjian. RELATION BETWEEN THE EFFECTS OF FINITE THICKNESS AND TILTED MAGNETIC FIELDS IN THE FRACTIONAL QUANTUM HALL EFFECT [J]. Chin. Phys. Lett., 1990, 7(11): 514-517.
    [10]HUANG Fengyi. POSSIBLE EXPLANATION OF THE PLATEAU WIDTH IN THE QUANTUM HALL EFFECT AT FINITE TEMPERATURE [J]. Chin. Phys. Lett., 1989, 6(12): 541-545.
  • Cited by

    Periodical cited type(6)

    1. Myers, S.A., Huang, H., Hussain, W. et al. Thermal activation signatures of the Anderson insulator and the Wigner solid forming near ν=1. Physical Review Research, 2024, 6(2): L022056. DOI:10.1103/PhysRevResearch.6.L022056
    2. Liu, X., Wu, M., Wang, R. et al. Interaction between Surface Acoustic Wave and Quantum Hall Effects. Chinese Physics Letters, 2024, 41(4): 047301. DOI:10.1088/0256-307X/41/4/047301
    3. Lin, W., Fan, X., Zhao, L. et al. Metastable charge distribution between degenerate Landau levels. Physical Review B, 2024, 109(3): 035305. DOI:10.1103/PhysRevB.109.035305
    4. Huang, H., Hussain, W., Myers, S.A. et al. Density Dependence of the Phases of the v = 1 Integer Quantum Hall Plateau in Low Disorder Electron Gases. Physica Status Solidi - Rapid Research Letters, 2024. DOI:10.1002/pssr.202400376
    5. Zhao, L., Lin, W., Chung, Y.J. et al. Dynamic Response of Wigner Crystals. Physical Review Letters, 2023, 130(24): 246401. DOI:10.1103/PhysRevLett.130.246401
    6. Li, J.-K., Wang, H.-Z., Zhang, J.-Y. et al. Quantum capacitance properties of the holes in planar germanium. Applied Physics Letters, 2023, 122(6): 063102. DOI:10.1063/5.0137292

    Other cited types(0)

Catalog

    Article views (422) PDF downloads (223) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return