[1] | Maier T A and Scalapino D J 2014 Phys. Rev. B 90 174510 | Pairing interaction near a nematic quantum critical point of a three-band model
[2] | Lederer S, Schattner Y, Berg E, and Kivelson S A 2015 Phys. Rev. Lett. 114 097001 | Enhancement of Superconductivity near a Nematic Quantum Critical Point
[3] | Metlitski M A, Mross D F, Sachdev S, and Senthil T 2015 Phys. Rev. B 91 115111 | Cooper pairing in non-Fermi liquids
[4] | Mandal I 2016 Phys. Rev. B 94 115138 | Superconducting instability in non-Fermi liquids
[5] | Lederer S, Schattner Y, Berg E, and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905 | Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point
[6] | Li Z X, Wang F, Yao H, and Lee D H 2017 Phys. Rev. B 95 214505 | Nature of the effective interaction in electron-doped cuprate superconductors: A sign-problem-free quantum Monte Carlo study
[7] | Sachdev S 2010 Phys. Status Solidi (b) 247 537 | Where is the quantum critical point in the cuprate superconductors?
[8] | Ishida K, Onishi Y, Tsujii M, Mukasa K, Qiu M, Saito M, Sugimura Y, Matsuura K, Mizukami Y, Hashimoto K, and Shibauchi T 2022 Proc. Natl. Acad. Sci. USA 119 e2110501119 | Pure nematic quantum critical point accompanied by a superconducting dome
[9] | Oganesyan V, Kivelson S A, and Fradkin E 2001 Phys. Rev. B 64 195109 | Quantum theory of a nematic Fermi fluid
[10] | Metzner W, Rohe D, and Andergassen S 2003 Phys. Rev. Lett. 91 066402 | Soft Fermi Surfaces and Breakdown of Fermi-Liquid Behavior
[11] | Lee S S 2009 Phys. Rev. B 80 165102 | Low-energy effective theory of Fermi surface coupled with U(1) gauge field in dimensions
[12] | Metlitski M A and Sachdev S 2010 Phys. Rev. B 82 075127 | Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order
[13] | Metlitski M A and Sachdev S 2010 Phys. Rev. B 82 075128 | Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order
[14] | Mross D F, McGreevy J, Liu H, and Senthil T 2010 Phys. Rev. B 82 045121 | Controlled expansion for certain non-Fermi-liquid metals
[15] | Holder T and Metzner W 2015 Phys. Rev. B 92 041112 | Anomalous dynamical scaling from nematic and U(1) gauge field fluctuations in two-dimensional metals
[16] | Schlief A, Lunts P, and Lee S S 2017 Phys. Rev. X 7 021010 | Exact Critical Exponents for the Antiferromagnetic Quantum Critical Metal in Two Dimensions
[17] | Xu X Y, Liu Z H, Pan G, Qi Y, Sun K, and Meng Z Y 2019 J. Phys.: Condens. Matter 31 463001 | Revealing fermionic quantum criticality from new Monte Carlo techniques
[18] | Berg E, Lederer S, Schattner Y, and Trebst S 2019 Annu. Rev. Condens. Matter Phys. 10 63 | Monte Carlo Studies of Quantum Critical Metals
[19] | Xu X Y, Sun K, Schattner Y, Berg E, and Meng Z Y 2017 Phys. Rev. X 7 031058 | Non-Fermi Liquid at ( ) Ferromagnetic Quantum Critical Point
[20] | Liu Z H, Xu X Y, Qi Y, Sun K, and Meng Z Y 2018 Phys. Rev. B 98 045116 | Itinerant quantum critical point with frustration and a non-Fermi liquid
[21] | Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 | Ordering, metastability and phase transitions in two-dimensional systems
[22] | Kosterlitz J M 1974 J. Phys. C 7 1046 | The critical properties of the two-dimensional xy model
[23] | Baskaran G, Zou Z, and Anderson P W 1987 Solid State Commun. 63 973 | The resonating valence bond state and high-Tc superconductivity — A mean field theory
[24] | Altland A and Simons B D 2010 Condensed Matter Field Theory (Cambridge: Cambridge University Press) |
[25] | Blankenbecler R, Scalapino D, and Sugar R 1981 Phys. Rev. D 24 2278 | Monte Carlo calculations of coupled boson-fermion systems. I
[26] | Hirsch J E 1985 Phys. Rev. B 31 4403 | Two-dimensional Hubbard model: Numerical simulation study
[27] | Assaad F and Evertz H 2008 Computational Many-Particle Physics (Berlin: Springer) p 277 |
[28] | Hirsch J E 1983 Phys. Rev. B 28 4059 | Discrete Hubbard-Stratonovich transformation for fermion lattice models
[29] | Isakov S and Moessner R 2003 Phys. Rev. B 68 104409 | Interplay of quantum and thermal fluctuations in a frustrated magnet
[30] | Sandvik A W 1998 Phys. Rev. B 57 10287 | Stochastic method for analytic continuation of quantum Monte Carlo data
[31] | Sandvik A W 2016 Phys. Rev. E 94 063308 | Constrained sampling method for analytic continuation
[32] | Beach K 2004 arXiv:cond-mat/0403055 [cond-mat.str-el] | Identifying the maximum entropy method as a special limit of stochastic analytic continuation
[33] | Shao H and Sandvik A W 2022 arXiv:2202.09870 [cond-mat.str-el] | Progress on stochastic analytic continuation of quantum Monte Carlo data
[34] | Jiang W, Liu Y, Klein A, Wang Y, Sun K, Chubukov A V, and Meng Z Y 2022 Nat. Commun. 13 2655 | Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations
[35] | Emery V and Kivelson S 1995 Nature 374 434 | Importance of phase fluctuations in superconductors with small superfluid density
[36] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[37] | Dahm T, Hinkov V, Borisenko S, Kordyuk A, Zabolotnyy V, Fink J, Büchner B, Scalapino D, Hanke W, and Keimer B 2009 Nat. Phys. 5 217 | Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor
[38] | Reber T, Plumb N, Cao Y, Sun Z, Wang Q, McElroy K, Iwasawa H, Arita M, Wen J, Xu Z et al. 2013 Phys. Rev. B 87 060506 | Prepairing and the “filling” gap in the cuprates from the tomographic density of states
[39] | Migdal A 1958 Sov. Phys.-JETP 34 996 |
[40] | Eliashberg G 1960 Sov. Phys.-JETP 11 696 |