[1] | O'Leary D P, Brennen G K, and Bullock S S 2006 Phys. Rev. A 74 032334 | Parallelism for quantum computation with qudits
[2] | van Loock P, Munro W J, Nemoto K, Spiller T P, Ladd T D, Braunstein S L, and Milburn G J 2008 Phys. Rev. A 78 022303 | Hybrid quantum computation in quantum optics
[3] | Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002 | Adiabatic quantum computation
[4] | Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, and Lukin M D 2000 Phys. Rev. Lett. 85 2208 | Fast Quantum Gates for Neutral Atoms
[5] | Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313 | Quantum information with Rydberg atoms
[6] | Basak S, Chougale Y, and Nath R 2018 Phys. Rev. Lett. 120 123204 | Periodically Driven Array of Single Rydberg Atoms
[7] | Mallavarapu S K, Niranjan A, Li W, Wüster S, and Nath R 2021 Phys. Rev. A 103 023335 | Population trapping in a pair of periodically driven Rydberg atoms
[8] | Møller D, Madsen L B, and Mølmer K 2008 Phys. Rev. Lett. 100 170504 | Quantum Gates and Multiparticle Entanglement by Rydberg Excitation Blockade and Adiabatic Passage
[9] | Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, and Zoller P 2001 Phys. Rev. Lett. 87 037901 | Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles
[10] | Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T G, and Saffman M 2009 Nat. Phys. 5 110 | Observation of Rydberg blockade between two atoms
[11] | Gaetan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, parat D C, Pillet P, Browaeys A, and Grangier P 2009 Nat. Phys. 5 115 | Observation of collective excitation of two individual atoms in the Rydberg blockade regime
[12] | Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, and Lukin M D 2019 Phys. Rev. Lett. 123 170503 | Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms
[13] | Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V, and Lukin M D 2018 Phys. Rev. Lett. 121 123603 | High-Fidelity Control and Entanglement of Rydberg-Atom Qubits
[14] | Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, and Saffman M 2010 Phys. Rev. Lett. 104 010503 | Demonstration of a Neutral Atom Controlled-NOT Quantum Gate
[15] | Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, and Browaeys A 2010 Phys. Rev. Lett. 104 010502 | Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade
[16] | Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, and Endres M 2020 Nat. Phys. 16 857 | High-fidelity entanglement and detection of alkaline-earth Rydberg atoms
[17] | Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2017 Phys. Rev. Lett. 119 160502 | Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade
[18] | Ding D S, Busche H, Shi B S, Guo G C, and Adams C S 2020 Phys. Rev. X 10 021023 | Phase Diagram and Self-Organizing Dynamics in a Thermal Ensemble of Strongly Interacting Rydberg Atoms
[19] | Hannes B, Sylvai S, Alexander K, Harry L, Ahmed O, Hannes P, Soonwon C, Alexander S Z, Manuel E, Markus G, Vuletić V, and Mikhail D L 2017 Nature 551 579 | Probing many-body dynamics on a 51-atom quantum simulator
[20] | Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 | Holonomic quantum computation
[21] | Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 | Appearance of Gauge Structure in Simple Dynamical Systems
[22] | Berry M V 1984 Proc. R. Soc. London A 392 45 | Quantal Phase Factors Accompanying Adiabatic Changes
[23] | Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 | Phase change during a cyclic quantum evolution
[24] | Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305 | Non-Abelian Berry connections for quantum computation
[25] | Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695 | Geometric Manipulation of Trapped Ions for Quantum Computation
[26] | Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501 | Holonomic Quantum Computation in Decoherence-Free Subspaces
[27] | Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y, and Duan L M 2019 Phys. Rev. Lett. 122 010503 | Experimental Realization of Robust Geometric Quantum Gates with Solid-State Spins
[28] | Jones J A, Vedral V, Ekert A, and Castagnoli G 2000 Nature 403 869 | Geometric quantum computation using nuclear magnetic resonance
[29] | Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 097901 | Nonadiabatic Conditional Geometric Phase Shift with NMR
[30] | Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902 | Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases
[31] | Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035 | Non-adiabatic holonomic quantum computation
[32] | Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501 | Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces
[33] | Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song Y P, Xue Z Y, and Sun L 2020 Phys. Rev. Lett. 124 230503 | Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit
[34] | Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, and Duan L M 2014 Nature 514 72 | Experimental realization of universal geometric quantum gates with solid-state spins
[35] | Arroyo-Camejo S, Lazariev A, Hell S W, and Balasubramanian G 2014 Nat. Commun. 5 4870 | Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin
[36] | Du J, Zou P, and Wang Z D 2006 Phys. Rev. A 74 020302 | Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer
[37] | Feng G, Xu G, and Long G 2013 Phys. Rev. Lett. 110 190501 | Experimental Realization of Nonadiabatic Holonomic Quantum Computation
[38] | Xia T, Zhang X L, and Saffman M 2013 Phys. Rev. A 88 062337 | Analysis of a controlled phase gate using circular Rydberg states
[39] | Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710 | Rydberg blockade, Förster resonances, and quantum state measurements with different atomic species
[40] | Theis L S, Motzoi F, Wilhelm F K, and Saffman M 2016 Phys. Rev. A 94 032306 | High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses
[41] | Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316 | Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
[42] | Petrosyan D, Motzoi F, Saffman M, and Mølmer K 2017 Phys. Rev. A 96 042306 | High-fidelity Rydberg quantum gate via a two-atom dark state
[43] | Shao X Q, Li D X, Ji Y Q, Wu J H, and Yi X X 2017 Phys. Rev. A 96 012328 | Ground-state blockade of Rydberg atoms and application in entanglement generation
[44] | Wang Y, Kumar A, Wu T Y, and Weiss D S 2016 Science 352 1562 | Single-qubit gates based on targeted phase shifts in a 3D neutral atom array
[45] | Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, and Biedermann G W 2014 Phys. Rev. A 89 033416 | Two-atom Rydberg blockade using direct 6 to excitation