[1] | Xu Y, Wang Q, Shen C, Lin Q, Wang P and Lu M 2017 Nature 549 78 | A series of energetic metal pentazolate hydrates
[2] | Zhang C, Sun C, Hu B, Yu C and Lu M 2017 Science 355 374 | Synthesis and characterization of the pentazolate anion cyclo -N5 ˉ in (N5 )6 (H3 O)3 (NH4 )4 Cl
[3] | Zhang C, Yang C, Hu B, Yu C, Zheng Z and Sun C 2017 Angew. Chem. Int. Ed. 56 4512 | A Symmetric Co(N5 )2 (H2 O)4 ⋅4 H2 O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5− Anion
[4] | Luo J H, Chen L Y, Nguyen D N, Guo D, An Q and Cheng M J 2018 J. Phys. Chem. C 122 21192 | Dual Functions of Water in Stabilizing Metal-Pentazolate Hydrates [M(N5 )2 (H2 O)4 ]·4H2 O (M = Mn, Fe, Co, and Zn) High-Energy-Density Materials
[5] | Peng F, Yao Y, Liu H and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 | Crystalline LiN5 Predicted from First-Principles as a Possible High-Energy Material
[6] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 | Sodium pentazolate: A nitrogen rich high energy density material
[7] | Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B and Oleynik I I 2017 Chem. Mater. 29 735 | High-Pressure Synthesis of a Pentazolate Salt
[8] | Laniel D, Weck G, Gaiffe G, Garbarino G and Loubeyre P 2018 J. Phys. Chem. Lett. 9 1600 | High-Pressure Synthesized Lithium Pentazolate Compound Metastable under Ambient Conditions
[9] | Li J, Sun L, Wang X, Zhu H and Miao M 2018 J. Phys. Chem. C 122 22339 | Simple Route to Metal cyclo -N5– Salt: High-Pressure Synthesis of CuN5
[10] | Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. Lett. 10 6166 | Predictions on High-Power Trivalent Metal Pentazolate Salts
[11] | Xia K, Zheng X, Yuan J, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. C 123 10205 | Pressure-Stabilized High-Energy-Density Alkaline-Earth-Metal Pentazolate Salts
[12] | Liu Z, Li D, Tian F, Duan D, Li H and Cui T 2020 Inorg. Chem. 59 8002 | Moderate Pressure Stabilized Pentazolate Cyclo-N5– Anion in Zn(N5 )2 Salt
[13] | Yi W C, Zhao K F, Wang Z X, Yang B C, Liu Z and Liu X B 2020 ACS Omega 5 6221 | Stabilization of the High-Energy-Density CuN5 Salts under Ambient Conditions by a Ligand Effect
[14] | Yi W, Zhao L, Liu X, Chen X, Zheng Y and Miao M 2020 Mater. & Des. 193 108820 | Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds
[15] | Yuan J N, Xia K, Wu J F and Sun J 2021 Sci. Chin. Phys. Mech. & Astron. 64 218211 | High-energy-density pentazolate salts: CaN10 and BaN10
[16] | Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 | Crystal structure prediction via particle-swarm optimization
[17] | Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 | CALYPSO: A method for crystal structure prediction
[18] | Wang H, Wang Y, Lv J, Li Q, Zhang L and Ma Y 2016 Comput. Mater. Sci. 112 406 | CALYPSO structure prediction method and its wide application
[19] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[20] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[21] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[22] | Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 | Effect of the damping function in dispersion corrected density functional theory
[23] | Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 | Chemical accuracy for the van der Waals density functional
[24] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[25] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702 | High-Pressure Phases of Nitrogen
[26] | Jiao F, Zhang C and Xie W 2020 J. Phys. Chem. C 124 19953 | High-Pressure FeN x : Stability, Phase Transition, and Energetic Characteristic
[27] | Suzuki K, Morita H, Kaneko T, Yoshida H and Fujimori H 1993 J. Alloys Compd. 201 11 | Crystal structure and magnetic properties of the compound FeN
[28] | Zhang J, Oganov A R, Li X and Niu H 2017 Phys. Rev. B 95 020103 | Pressure-stabilized hafnium nitrides and their properties
[29] | Huang B, Wang B, Wu S, Guégan F, Hu W and Frapper G 2021 Chem. Mater. 33 5298 | Predicted Polymeric and Layered Covalent Networks in Transition Metal Pentazolate M( cyclo -N5 ) x Phases at Ambient and High Pressure: Up to 20 Nitrogen Atoms per Metal
[30] | Huang S D, Shang C, Kang P L, Zhang X J and Liu Z P 2019 WWIREs: Comput. Mol. Sci. 9 e1415 | LASP: Fast global potential energy surface exploration
[31] | Shang C, Zhang X J and Liu Z P 2014 Phys. Chem. Chem. Phys. 16 17845 | Stochastic surface walking method for crystal structure and phase transition pathway prediction
[32] | Yi W C, Jiang X G, Yang T, Yang B C, Liu Z and Liu X B 2020 ACS Omega 5 24946 | Crystalline Structures and Energetic Properties of Lithium Pentazolate under Ambient Conditions
[33] | Zhang X, Yang J, Lu M and Gong X 2015 Struct. Chem. 26 785 | Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 − and metallic cations Na+, Fe2+ and Ni2+
[34] | Wozniak D R and Piercey D G 2020 Engineering 6 981 | Review of the Current Synthesis and Properties of Energetic Pentazolate and Derivatives Thereof
[35] | Lein M, Frunzke J, Timoshkin A and Frenking G 2001 Chem. Eur. J. 7 4155 | Iron Bispentazole Fe(η5-N5)2, a Theoretically Predicted High-Energy Compound: Structure, Bonding Analysis, Metal-Ligand Bond Strength and a Comparison with the Isoelectronic Ferrocene
[36] | Frenking G 2001 J. Organomet. Chem. 635 9 | Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond
[37] | Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899 | Improved grid-based algorithm for Bader charge allocation
[38] | Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 | Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
[39] | Maintz S, Deringer V L and Tchougréeff A L 2016 J. Comput. Chem. 37 1030 | LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
[40] | Hedin L 1965 Phys. Rev. 139 A796 | New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem
[41] | Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102 | Self-consistent calculations for semiconductors and insulators
[42] | Luo W D, Ismail-Beigi S, Cohen M L and Louie S G 2002 Phys. Rev. B 66 195215 | Quasiparticle band structure of ZnS and ZnSe
[43] | Liu L, Zhang S and Zhang H 2022 Chin. Phys. Lett. 39 056102 | Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density
[44] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 | Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman‐Jouguet Detonation Pressures on the Basis of Available Experimental Information