[1] | Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 | Feshbach resonances in ultracold gases
[2] | Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586 | Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling
[3] | Luo X Y, Zuo Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620 | Deterministic entanglement generation from driving through quantum phase transitions
[4] | Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Phys. Rev. Lett. 90 053201 | Tuning -Wave Interactions in an Ultracold Fermi Gas of Atoms
[5] | Suno H and Esry B D 2009 Phys. Rev. A 80 062702 | Three-body recombination in cold helium–helium–alkali-metal-atom collisions
[6] | D'Incao J P and Esry B D 2005 Phys. Rev. Lett. 94 213201 | Scattering Length Scaling Laws for Ultracold Three-Body Collisions
[7] | Suno H, Esry B D, Greene C H and Burke J P 2002 Phys. Rev. A 65 042725 | Three-body recombination of cold helium atoms
[8] | Suno H 2017 Phys. Rev. A 96 012508 | Structure of the weakly bound triatomic and molecules
[9] | Zipkes C, Palzer S, Sias C and Köhl M 2010 Nature 464 388 | A trapped single ion inside a Bose–Einstein condensate
[10] | Schmid S, Härter A and Denschlag J H 2010 Phys. Rev. Lett. 105 133202 | Dynamics of a Cold Trapped Ion in a Bose-Einstein Condensate
[11] | Hall F H J, Aymar M, Boulouta-Maata N, Dulieu O and Willitsch S 2011 Phys. Rev. Lett. 107 243202 | Light-Assisted Ion-Neutral Reactive Processes in the Cold Regime: Radiative Molecule Formation versus Charge Exchange
[12] | Grier A T, Certina M, Orucevic F and Vuletic V 2009 Phys. Rev. Lett. 102 223201 | Observation of Cold Collisions between Trapped Ions and Trapped Atoms
[13] | Ravi K, Lee S, Sharma A, Werth G and Rangwala S A 2012 Nat. Commun. 3 1126 | Cooling and stabilization by collisions in a mixed ion–atom system
[14] | Hall F H J and Willitsch S 2012 Phys. Rev. Lett. 109 233202 | Millikelvin Reactive Collisions between Sympathetically Cooled Molecular Ions and Laser-Cooled Atoms in an Ion-Atom Hybrid Trap
[15] | Härter A, Krükow A, Brunner A, Schnitzler W, Schnid S and Denschlag J H 2012 Phys. Rev. Lett. 109 123201 | Single Ion as a Three-Body Reaction Center in an Ultracold Atomic Gas
[16] | Neves P N B, Conde C A N and Távora L M N 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 66 | A new experimental technique for positive ion drift velocity measurements in noble gases: Results for xenon ions in xenon
[17] | Neves P N B, Conde C A N and Távora L M N 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 619 75 | The X++2X→X2++X reaction rate constant for Ar, Kr and Xe, at 300K
[18] | Jones J D C, Lister D G, Wareing D P and Twiddy J 1980 J. Phys. B 13 3247 | The temperature dependence of the three-body reaction rate coefficient for some rare-gas atomic ion-atom reactions in the range 100-300K
[19] | Papanyan V O, Nersisyan G T, Ter-Avetisyan S A and Tittle F K 1995 J. Phys. B 28 807 | Vacuum ultraviolet afterglow emission of rare gases and their mixtures
[20] | Krükow A, Mohammadi A, Härter A, Denschlag J H, Pérez-Ríos J and Greene C H 2016 Phys. Rev. Lett. 116 193201 | Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination
[21] | Pérez-Ríos J and Greene C H 2015 J. Chem. Phys. 143 041105 | Communication: Classical threshold law for ion-neutral-neutral three-body recombination
[22] | Wang B B 2021 Phys. Chem. Chem. Phys. 23 14617 | Scattering length scaling rules for atom–atom–anion three-body recombination of zero-energy4 He4 He6 Li− system
[23] | Pérez-Ríos J, Ragole S, Wang J and Greene C H 2014 J. Chem. Phys. 140 044307 | Comparison of classical and quantal calculations of helium three-body recombination
[24] | Wang B B, Jing S H and Zeng T X 2019 J. Chem. Phys. 150 094301 | Cold atom-atom-anion three-body recombination of4 He4 He x Li− ( x = 6 or 7) systems
[25] | Niles F E and Robertson W W 1965 J. Chem. Phys. 43 1076 | Conversion of Atomic Ions to Molecular Ions for the Noble Gases
[26] | Mahan B H 1965 J. Chem. Phys. 43 3080 | Mechanism for Ion—Neutral Association Reactions
[27] | Krükow A, Mohammadi A, Härter A and Denschlag J H 2016 Phys. Rev. A 94 030701 | Reactive two-body and three-body collisions of in an ultracold Rb gas
[28] | Härter A and Denschlag J H 2014 Contemp. Phys. 55 33 | Cold atom–ion experiments in hybrid traps
[29] | Zhao M M, Wang B B and Han Y C 2022 Phys. Rev. Res. 4 013030 | Full-dimensional quantum mechanical study of
[30] | Wang B B, Han Y C, Gao W and Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926 | Cold atom–atom–ion three-body recombination of4 He–4 He–X− (X = H or D)
[31] | Pack R T, Walker R B and Kendrick B K 1998 J. Chem. Phys. 109 6701 | Three-body collision contributions to recombination and collision-induced dissociation. I. Cross sections
[32] | Takayanagi T and Wada A 2002 Chem. Phys. 277 313 | A close-coupling study of collision-induced dissociation: three-dimensional calculations for the He+H2→He+H+H reaction
[33] | Suno H and Esry B D 2008 Phys. Rev. A 78 062701 | Adiabatic hyperspherical study of triatomic helium systems
[34] | Johnson B R 1980 J. Chem. Phys. 73 5051 | On hyperspherical coordinates and mapping the internal configurations of a three body system
[35] | Otto R, Ma J Y, Ray A W, Daluz J S, Li J, Guo H and Continetti R E 2014 Science 343 396 | Imaging Dynamics on the F + H2 O → HF + OH Potential Energy Surfaces from Wells to Barriers
[36] | Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015 | Multichannel Rydberg spectroscopy of complex atoms
[37] | Burke Jr. J P 1999 PhD Dissertation (Boulder: University of Colorado) |
[38] | Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101 | Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ−)+H(2S) based on the quantum state-to-state dynamics*
[39] | Huang J Y, Chen J, Liu S and Zhang D H 2020 J. Phys. Chem. Lett. 11 8560 | Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Four-Atom Reactions
[40] | Kendrick B K, Pack R T, Walker R B and Hayes E F 1999 J. Chem. Phys. 110 6673 | Hyperspherical surface functions for nonzero total angular momentum. I. Eckart singularities
[41] | Johnson B R 1983 J. Chem. Phys. 79 1916 | The quantum dynamics of three particles in hyperspherical coordinates
[42] | Lepetit B, Peng Z and Kuppermann A 1990 Chem. Phys. Lett. 166 572 | Calculation of bound rovibrational states on the first electronically excited state of the H3 system
[43] | Jeziorska M, Cencek W, Patkowski K, Jeziorski B and Szalewicz K 2007 J. Chem. Phys. 127 124303 | Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data
[44] | Casalegno M, Mella M, Morosi G and Bressanini D 2000 J. Chem. Phys. 112 69 | Quantum Monte Carlo study of the H− impurity in small helium clusters
[45] | Suno H and Esry B D 2010 Phys. Rev. A 82 062521 | Adiabatic hyperspherical study of weakly bound helium–helium–alkali-metal triatomic systems
[46] | Nielsen E, Fedorov D V, Jensen A S and Garrido E 2001 Phys. Rep. 347 373 | The three-body problem with short-range interactions
[47] | Wang K D, Zhang H X, Huang X T, Liu Y F and Sun J F 2018 Phys. Rev. A 97 012703 | Low-energy electron scattering from methylene radicals: Multichannel-coupling effects
[48] | Wang Y, D'Incao J P and Esry B D 2011 Phys. Rev. A 83 032703 | Cold three-body collisions in hydrogen–hydrogen–alkali-metal atomic systems
[49] | Esry K D, Greene C H and Suno H 2001 Phys. Rev. A 65 010705 | Threshold laws for three-body recombination