[1] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[2] | Yan S, Huse D A, and White S R 2011 Science 332 1173 | Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet
[3] | Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, and Xiang T 2017 Phys. Rev. Lett. 118 137202 | Gapless Spin-Liquid Ground State in the Kagome Antiferromagnet
[4] | He Y C, Zaletel M P, Oshikawa M, and Pollmann F 2017 Phys. Rev. X 7 031020 | Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model
[5] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[6] | Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 | A Structurally Perfect S =1 /2 Kagomé Antiferromagnet
[7] | Helton J S et al. 2007 Phys. Rev. Lett. 98 107204 | Spin Dynamics of the Spin- Kagome Lattice Antiferromagnet
[8] | Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204 | Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides
[9] | Norman M R 2016 Rev. Mod. Phys. 88 041002 | Colloquium : Herbertsmithite and the search for the quantum spin liquid
[10] | Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469 | Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2
[11] | Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J, and Yu W 2017 Phys. Rev. Lett. 119 227208 | Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of
[12] | Li H et al. 2021 Nat. Commun. 12 3513 | Giant phonon anomalies in the proximate Kitaev quantum spin liquid α-RuCl3
[13] | Kimchi I, Nahum A, and Senthil T 2018 Phys. Rev. X 8 031028 | Valence Bonds in Random Quantum Magnets: Theory and Application to
[14] | Liu L, Shao H, Lin Y C, Guo W, and Sandvik A W 2018 Phys. Rev. X 8 041040 | Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets
[15] | Kawamura H and Uematsu K 2019 J. Phys.: Condens. Matter 31 504003 | Nature of the randomness-induced quantum spin liquids in two dimensions
[16] | Li Y, Chen G, Tong W, Pi L, Liu J, Yang Z, Wang X, and Zhang Q 2015 Phys. Rev. Lett. 115 167203 | Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of
[17] | Ma Z et al. 2018 Phys. Rev. Lett. 120 087201 | Spin-Glass Ground State in a Triangular-Lattice Compound
[18] | Kimchi I, Sheckelton J P, McQueen T M, and Lee P A 2018 Nat. Commun. 9 4367 | Scaling and data collapse from local moments in frustrated disordered quantum spin systems
[19] | Kageyama H, Yoshimura K, Stern R, Mushnikov N V, Onizuka K, Kato M, Kosuge K, Slichter C P, Goto T, and Ueda Y 1999 Phys. Rev. Lett. 82 3168 | Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System
[20] | Waki T, Arai K, Takigawa M, Saiga Y, Uwatoko Y, Kageyama H, and Ueda Y 2007 J. Phys. Soc. Jpn. 76 073710 | A Novel Ordered Phase in SrCu2 (BO3 )2 under High Pressure
[21] | Radtke G, Saul A, Dabkowska H A, Salamon M B, and Jaime M 2015 Proc. Natl. Acad. Sci. USA 112 1971 | Magnetic nanopantograph in the SrCu2 (BO3 )2 Shastry–Sutherland lattice
[22] | Haravifard S et al. 2016 Nat. Commun. 7 11956 | Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2
[23] | Zayed M et al. 2017 Nat. Phys. 13 962 | 4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2
[24] | Bettler S, Stoppel L, Yan Z, Gvasaliya S, and Zheludev A 2020 Phys. Rev. Res. 2 012010(R) | Sign switching of dimer correlations in under hydrostatic pressure
[25] | Guo J, Sun G, Zhao B, Wang L, Hong W, Sidorov V A, Ma N, Wu Q, Li S, Meng Z Y, Sandvik A W, and Sun L 2020 Phys. Rev. Lett. 124 206602 | Quantum Phases of from High-Pressure Thermodynamics
[26] | Jiménez J L et al. 2021 Nature 592 370 | A quantum magnetic analogue to the critical point of water
[27] | Shastry B S and Sutherland B 1981 Physica B+C 108 1069 | Exact ground state of a quantum mechanical antiferromagnet
[28] | Lee J Y, You Y Z, Sachdev S, and Vishwanath A 2019 Phys. Rev. X 9 041037 | Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to Quantum Critical
[29] | Sun G, Ma N, Zhao B, Sandvik A W, and Meng Z Y 2021 Chin. Phys. B 30 067505 | Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets*
[30] | Zhao B, Weinberg P, and Sandvik A W 2019 Nat. Phys. 15 678 | Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet
[31] | Yang J, Sandvik A W, and Wang L 2022 Phys. Rev. B 105 L060409 | Quantum criticality and spin liquid phase in the Shastry-Sutherland model
[32] | Keleş A and Zhao E 2022 Phys. Rev. B 105 L041115 | Rise and fall of plaquette order in the Shastry-Sutherland magnet revealed by pseudofermion functional renormalization group
[33] | Wang L and Sandvik A W 2018 Phys. Rev. Lett. 121 107202 | Critical Level Crossings and Gapless Spin Liquid in the Square-Lattice Spin- Heisenberg Antiferromagnet
[34] | Gong S S, Zhu W, Sheng D N, Motrunich O I, and Fisher M P A 2014 Phys. Rev. Lett. 113 027201 | Plaquette Ordered Phase and Quantum Phase Diagram in the Spin- Square Heisenberg Model
[35] | Morita S, Kaneko R, and Imada M 2015 J. Phys. Soc. Jpn. 84 024720 | Quantum Spin Liquid in Spin 1/2 J1 – J2 Heisenberg Model on Square Lattice: Many-Variable Variational Monte Carlo Study Combined with Quantum-Number Projections
[36] | Ferrari F and Becca F 2020 Phys. Rev. B 102 014417 | Gapless spin liquid and valence-bond solid in the - Heisenberg model on the square lattice: Insights from singlet and triplet excitations
[37] | Nomura Y and Imada M 2021 Phys. Rev. X 11 031034 | Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
[38] | Shackleton H, Thomson A, and Sachdev S 2021 Phys. Rev. B 104 045110 | Deconfined criticality and a gapless spin liquid in the square-lattice antiferromagnet
[39] | Laflorencie N and Poilblanc D 2004 Quantum Magnetism 645 227 | Lecture Notes in Physics
[40] | Noack R M and Manmana S R 2005 AIP Conf. Proc. 789 93 | Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems
[41] | Weisse A and Fehske H 2008 Computational Many-Particle Physics 739 529 | Lecture Notes in Physics
[42] | Läuchli A M 2011 Numerical Simulations of Frustrated Systems, in Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences edited by Lacroix C, Mendels P and Mila F (Berlin: Springer) vol 164 pp 481–511 | Springer Series in Solid-State Sciences
[43] | Sandvik A W 2010 AIP Conf. Proc. 1297 135 | AIP Conference Proceedings
[44] | Okamoto K and Nomura K 1992 Phys. Lett. A 169 433 | Fluid-dimer critical point in S = antiferromagnetic Heisenberg chain with next nearest neighbor interactions
[45] | Eggert S 1996 Phys. Rev. B 54 R9612 | Numerical evidence for multiplicative logarithmic corrections from marginal operators
[46] | Sandvik A W 2010 Phys. Rev. Lett. 104 137204 | Ground States of a Frustrated Quantum Spin Chain with Long-Range Interactions
[47] | Suwa H, Sen A, and Sandvik A W 2016 Phys. Rev. B 94 144416 | Level spectroscopy in a two-dimensional quantum magnet: Linearly dispersing spinons at the deconfined quantum critical point
[48] | Laflorencie N, Affleck I, and Berciu M 2005 J. Stat. Mech.: Theory Exp. 2005 P12001 | Critical phenomena and quantum phase transition in long range Heisenberg antiferromagnetic chains
[49] | Koga A and Kawakami N 2000 Phys. Rev. Lett. 84 4461 | Quantum Phase Transitions in the Shastry-Sutherland Model for
[50] | Corboz P and Mila F 2013 Phys. Rev. B 87 115144 | Tensor network study of the Shastry-Sutherland model in zero magnetic field
[51] | Anderson P W 1959 Phys. Rev. B 115 2 | New Approach to the Theory of Superexchange Interactions
[52] | Though these triplets with energy between $E(T_{1})$ and $E(T_{2})$ have lattice quantum numbers different from those of $T_{1}$ and $T_{2}$, the corresponding symmetries are not implemented in the DMRG calculation (but the total spin symmetry is implemented in this case), only computed as expectation values with the states obtained. The states have to be generated one-by-one starting from the lowest one and convergence of this procedure becomes increasingly challenging with the number of states computed (Refs.[31, 33]) and we have not been able to reach the state with quantum numbers corresponding to $T_{2}$ for $N=40$. |
[53] | Nakamura M 2000 Phys. Rev. B 61 16377 | Tricritical behavior in the extended Hubbard chains
[54] | Suwa H and Todo S 2015 Phys. Rev. Lett. 115 080601 | Generalized Moment Method for Gap Estimation and Quantum Monte Carlo Level Spectroscopy
[55] | Lecheminant P, Bernu B, Lhuillier C, Pierre L, and Sindzingre P 1997 Phys. Rev. B 56 2521 | Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis
[56] | Misguich G and Sindzingre P 2007 J. Phys.: Condens. Matter 19 145202 | Detecting spontaneous symmetry breaking in finite-size spectra of frustrated quantum antiferromagnets
[57] | Schuler M, Whitsitt S, Henry L P, Sachdev S, and Läuchli A M 2016 Phys. Rev. Lett. 117 210401 | Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories
[58] | Hermele M, Senthil T, and Fisher M P A 2005 Phys. Rev. B 72 104404 | Algebraic spin liquid as the mother of many competing orders
[59] | Chen J Y and Poilblanc D 2018 Phys. Rev. B 97 161107(R) | Topological resonating-valence-bond spin liquid on the square lattice
[60] | Boyack R, Lin C H, Zerf N, Rayyan A, and Maciejko J 2018 Phys. Rev. B 98 035137 | Transition between algebraic and quantum spin liquids at large
[61] | Dupuis E, Boyack R, and Witczak-Krempa W 2021 arXiv:2108.05922 [cond-mat.str-el] | Anomalous dimensions of monopole operators at the transitions between Dirac and topological spin liquids
[62] | Liu W Y, Hasik J, Gong S S, Poilblanc D, Chen W Q, and Gu Z C 2021 arXiv:2110.11138 [cond-mat.str-el] | The emergence of gapless quantum spin liquid from deconfined quantum critical point
[63] | Shackleton H and Sachdev S 2022 arXiv:2203.01962 [cond-mat.str-el] | Anisotropic deconfined criticality in Dirac spin liquids
[64] | Xi N, Chen H, Xie Z Y, and Yu R 2021 arXiv:2111.07368 [cond-mat.str-el] | First-order transition between the plaquette valence bond solid and antiferromagnetic phases of the Shastry-Sutherland model
[65] | Lu D C, Xu C, and You Y Z 2021 Phys. Rev. B 104 205142 | Self-duality protected multicriticality in deconfined quantum phase transitions
[66] | Cui Y, Liu L, Lin H, Wu K H, Hong W, Liu X, Li C, Hu Z, Xi N, Li S, Yu R, Sandvik A W, and Yu W 2022 arXiv:2204.08133 [cond-mat.str-el] | Deconfined quantum criticality and emergent symmetry in SrCu2(BO3)2