[1] | Späh R et al. 1983 Appl. Phys. Lett. 43 79 | p n junctions in tungsten diselenide
[2] | Podzorov V et al. 2004 Appl. Phys. Lett. 84 3301 | High-mobility field-effect transistors based on transition metal dichalcogenides
[3] | Gan W et al. 2017 ACS Nano 11 1371 | A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor
[4] | Koenig S P et al. 2016 Nano Lett. 16 2145 | Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms
[5] | Lee P A et al. 1969 J. Phys. Chem. Solids 30 2719 | On the optical properties of some layer compounds
[6] | Britnell L et al. 2013 Science 340 1311 | Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films
[7] | Song J G et al. 2015 Nat. Commun. 6 7817 | Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer
[8] | Feng Q et al. 2014 Adv. Mater. 26 2648 | Growth of Large-Area 2D MoS 2(1- x ) Se 2 x Semiconductor Alloys
[9] | Zhang M et al. 2014 ACS Nano 8 7130 | Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport
[10] | Wang G et al. 2015 Nat. Commun. 6 10110 | Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
[11] | Gong Y J et al. 2014 Nano Lett. 14 442 | Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide
[12] | Dou K Y et al. 2020 Appl. Phys. Lett. 117 172405 | Promising valleytronic materials with strong spin-valley coupling in two-dimensional MN2 X2 (M = Mo, W; X = F, H)
[13] | Wilson J A et al. 1975 Adv. Phys. 24 117 | Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides
[14] | Wang Q et al. 2015 Small 11 5388 | BN-Enabled Epitaxy of Pb 1- x Sn x Se Nanoplates on SiO2 /Si for High-Performance Mid-Infrared Detection
[15] | Perumal P et al. 2016 Adv. Funct. Mater. 26 3630 | Ultra-Thin Layered Ternary Single Crystals [Sn(S x Se1− x )2 ] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates
[16] | Pan T S et al. 2013 Appl. Phys. Lett. 103 093108 | Field effect transistors with layered two-dimensional SnS2−x Sex conduction channels: Effects of selenium substitution
[17] | Makino Y et al. 2001 Appl. Phys. Lett. 78 1237 | Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films
[18] | Wasim S M et al. 2000 Appl. Phys. Lett. 77 94 | On the band gap anomaly in I–III–VI2, I–III3–VI5, and I–III5–VI8 families of Cu ternaries
[19] | Lv Y Y et al. 2017 Sci. Rep. 7 44587 | Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals
[20] | Moustafa M et al. 2016 Appl. Surf. Sci. 366 397 | Angle-resolved photoemission studies of the valence bands of ZrS Se2−
[21] | Rehman Z et al. 2019 Appl. Phys. Lett. 115 213102 | Band structure tailoring in ZrSe2 single crystal via trace rhenium intercalation
[22] | Li G et al. 2007 Phys. Rev. Lett. 99 027404 | Semimetal-to-Semimetal Charge Density Wave Transition in
[23] | Cheng C et al. 2018 Sci. Bull. 63 85 | Hidden spin polarization in the 1 T -phase layered transition-metal dichalcogenides MX 2 ( M = Zr, Hf; X = S, Se, Te)
[24] | Tsipas P et al. 2015 Microelectron. Eng. 147 269 | Epitaxial ZrSe2/MoSe2 semiconductor v.d. Waals heterostructures on wide band gap AlN substrates
[25] | Gao X Y et al. 2021 Thin Solid Films 732 138790 | Effects of the vacancy and doping on the electronic and magnetic characteristics of ZrSe2 monolayer: A first-principles investigation
[26] | Yan P et al. 2019 RSC Adv. 9 12394 | Bilayer MSe2 (M = Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study
[27] | Gao Y H et al. 2018 Comput. Mater. Sci. 146 36 | Electronic and magnetic properties of structural defects in pristine ZrSe2 monolayer
[28] | Bianco R et al. 2015 Phys. Rev. B 92 094107 | Electronic and vibrational properties of in the charge-density-wave phase from first principles
[29] | Wegner A et al. 2020 Phys. Rev. B 101 195145 | Evidence for pseudo–Jahn-Teller distortions in the charge density wave phase of
[30] | Chen P et al. 2016 Nano Lett. 16 6331 | Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe2
[31] | Chaves A et al. 2020 npj 2D Mater. Appl. 4 29 | Bandgap engineering of two-dimensional semiconductor materials
[32] | Tongay S et al. 2014 Appl. Phys. Lett. 104 012101 | Two-dimensional semiconductor alloys: Monolayer Mo1−x Wx Se2
[33] | Kar I et al. 2020 Phys. Rev. B 101 165122 | Metal-chalcogen bond-length induced electronic phase transition from semiconductor to topological semimetal in ( and Te)
[34] | Muhammad Z et al. 2020 ACS Nano 14 835 | Transition from Semimetal to Semiconductor in ZrTe2 Induced by Se Substitution
[35] | Moustafa M et al. 2009 Phys. Rev. B 80 035206 | Growth and band gap determination of the single crystal series
[36] | Moustafa M et al. 2013 J. Electron Spectrosc. Relat. Phenom. 189 35 | Spin orbit splitting in the valence bands of ZrSxSe2−x: Angle resolved photoemission and density functional theory
[37] | Zhang Y et al. 2016 Nano Lett. 16 2485 | Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films
[38] | Zhang Y et al. 2014 Nat. Nanotechnol. 9 111 | Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2