[1] | Klitzing K V, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494 | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance
[2] | Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405 | Quantized Hall Conductance in a Two-Dimensional Periodic Potential
[3] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[4] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 | Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
[5] | Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J, and Claessen R 2017 Science 357 287 | Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material
[6] | Li G, Hanke W, Hankiewicz E M, Reis F, Schäfer J, Claessen R, Wu C, and Thomale R 2018 Phys. Rev. B 98 165146 | Theoretical paradigm for the quantum spin Hall effect at high temperatures
[7] | Rüegg A and Fiete G A 2011 Phys. Rev. B 84 201103 | Topological insulators from complex orbital order in transition-metal oxides heterostructures
[8] | Yang K Y, Zhu W, Xiao D, Okamoto S, Wang Z, and Ran Y 2011 Phys. Rev. B 84 201104 | Possible interaction-driven topological phases in (111) bilayers of LaNiO
[9] | Sui Q, Zhang J, Jin S, Xia Y, and Li G 2020 Chin. Phys. Lett. 37 097301 | Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide
[10] | Wang H and Wang J 2021 Phys. Rev. B 103 L081109 | Topological bands in two-dimensional orbital-active bipartite lattices
[11] | Li Z, Han Y, and Qiao Z 2021 Phys. Rev. B 104 205401 | Large-gap quantum anomalous Hall effect in monolayer halide perovskite
[12] | Li J, Yao Q, Wu L, Hu Z, Gao B, Wan X, and Liu Q 2022 Nat. Commun. 13 919 | Designing light-element materials with large effective spin-orbit coupling
[13] | Rachel S and Le H K 2010 Phys. Rev. B 82 075106 | Topological insulators and Mott physics from the Hubbard interaction
[14] | Zheng D, Zhang G M, and Wu C 2011 Phys. Rev. B 84 205121 | Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model
[15] | Budich J C, Thomale R, Li G, Laubach M, and Zhang S C 2012 Phys. Rev. B 86 201407 | Fluctuation-induced topological quantum phase transitions in quantum spin-Hall and anomalous-Hall insulators
[16] | Grushin A G, Castro E V, Cortijo A, de Juan F, Vozmediano M A H, and Valenzuela B 2013 Phys. Rev. B 87 085136 | Charge instabilities and topological phases in the extended Hubbard model on the honeycomb lattice with enlarged unit cell
[17] | García-Martínez N A, Grushin A G, Neupert T, Valenzuela B, and Castro E V 2013 Phys. Rev. B 88 245123 | Interaction-driven phases in the half-filled spinless honeycomb lattice from exact diagonalization
[18] | Daghofer M and Hohenadler M 2014 Phys. Rev. B 89 035103 | Phases of correlated spinless fermions on the honeycomb lattice
[19] | Capponi S and Läuchli A M 2015 Phys. Rev. B 92 085146 | Phase diagram of interacting spinless fermions on the honeycomb lattice: A comprehensive exact diagonalization study
[20] | Motruk J, Grushin A G, de Juan F, and Pollmann F 2015 Phys. Rev. B 92 085147 | Interaction-driven phases in the half-filled honeycomb lattice: An infinite density matrix renormalization group study
[21] | Hohenadler M, Lang T C, and Assaad F F 2011 Phys. Rev. Lett. 106 100403 | Correlation Effects in Quantum Spin-Hall Insulators: A Quantum Monte Carlo Study
[22] | Yu S L, Xie X C, and Li J X 2011 Phys. Rev. Lett. 107 010401 | Mott Physics and Topological Phase Transition in Correlated Dirac Fermions
[23] | Castro E V, Grushin A G, Valenzuela B, Vozmediano M A H, Cortijo A, and de Juan F 2011 Phys. Rev. Lett. 107 106402 | Topological Fermi Liquids from Coulomb Interactions in the Doped Honeycomb Lattice
[24] | Sorella S, Otsuka Y, and Yunoki S 2012 Sci. Rep. 2 992 | Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
[25] | Kurita M, Yamaji Y, and Imada M 2016 Phys. Rev. B 94 125131 | Stabilization of topological insulator emerging from electron correlations on honeycomb lattice and its possible relevance in twisted bilayer graphene
[26] | Scherer D D, Scherer M M, and Honerkamp C 2015 Phys. Rev. B 92 155137 | Correlated spinless fermions on the honeycomb lattice revisited
[27] | Volpez Y, Scherer D D, and Scherer M M 2016 Phys. Rev. B 94 165107 | Electronic instabilities of the extended Hubbard model on the honeycomb lattice from functional renormalization
[28] | Kaneko R, Tocchio L F, Valentí R, and Gros C 2016 Phys. Rev. B 94 195111 | Emergent lattices with geometrical frustration in doped extended Hubbard models
[29] | de la Peña D S, Lichtenstein J, and Honerkamp C 2017 Phys. Rev. B 95 085143 | Competing electronic instabilities of extended Hubbard models on the honeycomb lattice: A functional renormalization group calculation with high-wave-vector resolution
[30] | Bijelic M, Kaneko R, Gros C, and Valentí R 2018 Phys. Rev. B 97 125142 | Suppression of topological Mott-Hubbard phases by multiple charge orders in the honeycomb extended Hubbard model
[31] | Raghu S, Qi X L, Honerkamp C, and Zhang S C 2008 Phys. Rev. Lett. 100 156401 | Topological Mott Insulators
[32] | Shao C, Castro E V, Hu S, and Mondaini R 2021 Phys. Rev. B 103 035125 | Interplay of local order and topology in the extended Haldane-Hubbard model
[33] | Yi T C, Hu S, Castro E V, and Mondaini R 2021 Phys. Rev. B 104 195117 | Interplay of interactions, disorder, and topology in the Haldane-Hubbard model
[34] | Bernevig A B, Hughes T L, and Zhang S C 2006 Science 314 1757 | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
[35] | Budich J C, Trauzettel B, and Sangiovanni G 2013 Phys. Rev. B 87 235104 | Fluctuation-driven topological Hund insulators
[36] | Wang L, Dai X, and Xie X C 2012 Europhys. Lett. 98 57001 | Interaction-induced topological phase transition in the Bernevig-Hughes-Zhang model
[37] | Li G, Hanke W, Sangiovanni G, and Trauzettel B 2015 Phys. Rev. B 92 235149 | Interacting weak topological insulators and their transition to Dirac semimetal phases
[38] | Amaricci A, Budich J C, Capone M, Trauzettel B, and Sangiovanni G 2015 Phys. Rev. Lett. 114 185701 | First-Order Character and Observable Signatures of Topological Quantum Phase Transitions
[39] | Wu H Q, He Y Y, Fang C, Meng Z Y, and Lu Z Y 2016 Phys. Rev. Lett. 117 066403 | Diagnosis of Interaction-driven Topological Phase via Exact Diagonalization
[40] | Griset C and Xu C 2012 Phys. Rev. B 85 045123 | Phase diagram of the Kane-Mele-Hubbard model
[41] | Laubach M, Reuther J, Thomale R, and Rachel S 2014 Phys. Rev. B 90 165136 | Rashba spin-orbit coupling in the Kane-Mele-Hubbard model
[42] | Ezawa M, Tanaka Y, and Nagaosa N 2013 Sci. Rep. 3 2790 | Topological Phase Transition without Gap Closing
[43] | Varney C N, Sun K, Rigol M, and Galitski V 2010 Phys. Rev. B 82 115125 | Interaction effects and quantum phase transitions in topological insulators
[44] | Barbarino S, Sangiovanni G, and Budich J C 2019 Phys. Rev. B 99 075158 | First-order topological quantum phase transition in a strongly correlated ladder
[45] | Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, and Mak K F 2021 Nature 600 641 | Quantum anomalous Hall effect from intertwined moiré bands