[1] | Katori H, Ido T, Isoya Y, and Kuwata-Gonokami M 2001 AIP Conf. Proc. 551 382 | Laser cooling of strontium atoms toward quantum degeneracy
[2] | Grünert J and Hemmerich A 2002 Phys. Rev. A 65 041401 | Sub-Doppler magneto-optical trap for calcium
[3] | Yang C Y, Halder P, Appel O, Hansen D, and Hemmerich A 2007 Phys. Rev. A 76 033418 | Continuous loading of calcium atoms into an optical dipole trap
[4] | Riedmann M, Kelkar H, Wübbena T, Pape A, Kulosa A, Zipfel K, Fim D, Rühmann S, Friebe J, Ertmer W, and Rasel E 2012 Phys. Rev. A 86 043416 | Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms
[5] | Sorrentino F, Ferrari G, Poli N, Drullinger R, and Tino G M 2006 Mod. Phys. Lett. B 20 1287 | LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS
[6] | Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photon. 9 185 | Cryogenic optical lattice clocks
[7] | Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, and Lisdat C 2014 New J. Phys. 16 073023 | A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency
[8] | McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 | Atomic clock performance enabling geodesy below the centimetre level
[9] | Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, and Ye J 2019 Nat. Photon. 13 714 | Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks
[10] | Hill I R, Hobson R, Bowden W, Bridge E M, Donnellan S, Curtis E A, and Gill P 2016 J. Phys.: Conf. Ser. 723 012019 | A low maintenance Sr optical lattice clock
[11] | Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, and Ye J 2017 Science 358 90 | A Fermi-degenerate three-dimensional optical lattice clock
[12] | Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C, and Sterr U 2015 Opt. Lett. 40 2112 | 8 × 10^−17 fractional laser frequency instability with a long room-temperature cavity
[13] | Hashiguchi K, Akatsuka T, Ohmae N, Takamoto M, and Katori H 2019 Phys. Rev. A 100 042513 | Frequency measurement on the transition of atoms using the photon-momentum-transfer technique
[14] | Hobson R, Bowden W, Vianello A, Hill I R, and Gill P 2020 Phys. Rev. A 101 013420 | Midinfrared magneto-optical trap of metastable strontium for an optical lattice clock
[15] | Yamaguchi A, Uetake S, and Takahashi Y 2008 Appl. Phys. B 91 57 | A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms
[16] | Yu D 2012 Phys. Rev. A 86 032703 | Multichannel ultracold collisions between metastable bosonic Sr and fermionic Sr atoms
[17] | Uetake S, Murakami R, Doyle J M, and Takahashi Y 2012 Phys. Rev. A 86 032712 | Spin-dependent collision of ultracold metastable atoms
[18] | Bhongale S G, Mathey L, Zhao E, Yelin S F, and Lemeshko M 2013 Phys. Rev. Lett. 110 155301 | Quantum Phases of Quadrupolar Fermi Gases in Optical Lattices
[19] | Daley A J, Boyd M M, Ye J, and Zoller P 2008 Phys. Rev. Lett. 101 170504 | Quantum Computing with Alkaline-Earth-Metal Atoms
[20] | Derevianko A 2001 Phys. Rev. Lett. 87 023002 | Feasibility of Cooling and Trapping Metastable Alkaline-Earth Atoms
[21] | Liu Y, Andersson M, Brage T, Zou Y, and Hutton R 2007 Phys. Rev. A 75 014502 | Lifetime calculations for the metastable level of
[22] | Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004 | Lifetime Measurement of the Metastable State of Strontium Atoms
[23] | Kelly J F, Harris M, and Gallagher A 1988 Phys. Rev. A 37 2354 | Collisional transfer within the Sr(5 ) multiplet due to nearly adiabatic collisions with noble gases
[24] | Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, and Chang H 2018 Chin. Phys. B 27 023701 | Strontium optical lattice clock at the National Time Service Center
[25] | Safronova M S, Porsev S G, Safronova U I, Kozlov M G, and Clark C W 2013 Phys. Rev. A 87 012509 | Blackbody-radiation shift in the Sr optical atomic clock
[26] | Bjorkholm J E 1988 Phys. Rev. A 38 1599 | Collision-limited lifetimes of atom traps
[27] | Redondo C, Sánchez Rayo M N, Ecija P, Husain D, and Castaño F 2004 Chem. Phys. Lett. 392 116 | Collisional dynamics of low energy states of atomic strontium following the generation of Sr(5s5p1P1) in the presence of Ne, Kr and Xe
[28] | Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, and Ye J 2015 Nat. Commun. 6 6896 | Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty
[29] | Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) p 518 |
[30] | Fischer C F, Godefroid M, Brage T, Jönsson P, and Gaigalas G 2016 J. Phys. B 49 182004 | Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions
[31] | Johnson W R 2007 Atomic Structure Theory-Lectures on Atomic Physics (New York: Springer) p 185 |
[32] | Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å, and Fischer C F 1995 Phys. Rev. E 52 4499 | Transition probability calculations for atoms using nonorthogonal orbitals
[33] | Verdebout S, Jönsson P, Gaigalas G, Godefroid M, and Fischer C F 2010 J. Phys. B 43 074017 | Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations
[34] | Lu B, Zhang T, Chang H, Li J, Wu Y, and Wang J 2019 Phys. Rev. A 100 012504 | Reevaluation of the nuclear electric quadrupole moment for by hyperfine structures and relativistic atomic theory
[35] | Fischer C F, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184 | GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package
[36] | Sansonetti J E and Nave G 2010 J. Phys. Chem. Ref. Data 39 033103 | Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (SrI)