Processing math: 100%

Reconciliation of Theoretical Lifetimes of the 5s5p3Po2 Metastable State for 88Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay

  • Received Date: May 06, 2022
  • Published Date: June 30, 2022
  • We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the 88Sr atom between theoretical and experimental results. The present lifetime τ=830+600240 s, measured using the magneto-optical trap as a photon amplifier to detect the weak decay events, is approximately 60% larger than the previous experimental value τ=520+310140 s. By considering the electron correlation effects in the framework of the multiconfiguration Dirac–Hartree–Fock theory, we obtained a theoretical lifetime of 1079(54) s, which lies in the range of measurements with error bars. Furthermore, we considered the higher-order electron correlation and Breit interaction to control the uncertainty of the theoretical calculation. The significant improvement in the agreement between calculations and measurements is attributed to the updated blackbody radiation-induced decay rate.
  • Article Text

  • [1]
    Katori H, Ido T, Isoya Y, and Kuwata-Gonokami M 2001 AIP Conf. Proc. 551 382 doi: 10.1063/1.1354362

    CrossRef Google Scholar

    [2]
    Grünert J and Hemmerich A 2002 Phys. Rev. A 65 041401 doi: 10.1103/PhysRevA.65.041401

    CrossRef Google Scholar

    [3]
    Yang C Y, Halder P, Appel O, Hansen D, and Hemmerich A 2007 Phys. Rev. A 76 033418 doi: 10.1103/PhysRevA.76.033418

    CrossRef Google Scholar

    [4]
    Riedmann M, Kelkar H, Wübbena T, Pape A, Kulosa A, Zipfel K, Fim D, Rühmann S, Friebe J, Ertmer W, and Rasel E 2012 Phys. Rev. A 86 043416 doi: 10.1103/PhysRevA.86.043416

    CrossRef Google Scholar

    [5]
    Sorrentino F, Ferrari G, Poli N, Drullinger R, and Tino G M 2006 Mod. Phys. Lett. B 20 1287 doi: 10.1142/S0217984906011682

    CrossRef Google Scholar

    [6]
    Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photon. 9 185 doi: 10.1038/nphoton.2015.5

    CrossRef Google Scholar

    [7]
    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, and Lisdat C 2014 New J. Phys. 16 073023 doi: 10.1088/1367-2630/16/7/073023

    CrossRef Google Scholar

    [8]
    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 doi: 10.1038/s41586-018-0738-2

    CrossRef Google Scholar

    [9]
    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, and Ye J 2019 Nat. Photon. 13 714 doi: 10.1038/s41566-019-0493-4

    CrossRef Google Scholar

    [10]
    Hill I R, Hobson R, Bowden W, Bridge E M, Donnellan S, Curtis E A, and Gill P 2016 J. Phys.: Conf. Ser. 723 012019 doi: 10.1088/1742-6596/723/1/012019

    CrossRef Google Scholar

    [11]
    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, and Ye J 2017 Science 358 90 doi: 10.1126/science.aam5538

    CrossRef Google Scholar

    [12]
    Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C, and Sterr U 2015 Opt. Lett. 40 2112 doi: 10.1364/OL.40.002112

    CrossRef Google Scholar

    [13]
    Hashiguchi K, Akatsuka T, Ohmae N, Takamoto M, and Katori H 2019 Phys. Rev. A 100 042513 doi: 10.1103/PhysRevA.100.042513

    CrossRef Google Scholar

    [14]
    Hobson R, Bowden W, Vianello A, Hill I R, and Gill P 2020 Phys. Rev. A 101 013420 doi: 10.1103/PhysRevA.101.013420

    CrossRef Google Scholar

    [15]
    Yamaguchi A, Uetake S, and Takahashi Y 2008 Appl. Phys. B 91 57 doi: 10.1007/s00340-008-2953-2

    CrossRef Google Scholar

    [16]
    Yu D 2012 Phys. Rev. A 86 032703 doi: 10.1103/PhysRevA.86.032703

    CrossRef Google Scholar

    [17]
    Uetake S, Murakami R, Doyle J M, and Takahashi Y 2012 Phys. Rev. A 86 032712 doi: 10.1103/PhysRevA.86.032712

    CrossRef Google Scholar

    [18]
    Bhongale S G, Mathey L, Zhao E, Yelin S F, and Lemeshko M 2013 Phys. Rev. Lett. 110 155301 doi: 10.1103/PhysRevLett.110.155301

    CrossRef Google Scholar

    [19]
    Daley A J, Boyd M M, Ye J, and Zoller P 2008 Phys. Rev. Lett. 101 170504 doi: 10.1103/PhysRevLett.101.170504

    CrossRef Google Scholar

    [20]
    Derevianko A 2001 Phys. Rev. Lett. 87 023002 doi: 10.1103/PhysRevLett.87.023002

    CrossRef Google Scholar

    [21]
    Liu Y, Andersson M, Brage T, Zou Y, and Hutton R 2007 Phys. Rev. A 75 014502 doi: 10.1103/PhysRevA.75.014502

    CrossRef Google Scholar

    [22]
    Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004 doi: 10.1103/PhysRevLett.92.153004

    CrossRef Google Scholar

    [23]
    Kelly J F, Harris M, and Gallagher A 1988 Phys. Rev. A 37 2354 doi: 10.1103/PhysRevA.37.2354

    CrossRef Google Scholar

    [24]
    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, and Chang H 2018 Chin. Phys. B 27 023701 doi: 10.1088/1674-1056/27/2/023701

    CrossRef Google Scholar

    [25]
    Safronova M S, Porsev S G, Safronova U I, Kozlov M G, and Clark C W 2013 Phys. Rev. A 87 012509 doi: 10.1103/PhysRevA.87.012509

    CrossRef Google Scholar

    [26]
    Bjorkholm J E 1988 Phys. Rev. A 38 1599 doi: 10.1103/PhysRevA.38.1599

    CrossRef Google Scholar

    [27]
    Redondo C, Sánchez Rayo M N, Ecija P, Husain D, and Castaño F 2004 Chem. Phys. Lett. 392 116 doi: 10.1016/j.cplett.2004.03.156

    CrossRef Google Scholar

    [28]
    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, and Ye J 2015 Nat. Commun. 6 6896 doi: 10.1038/ncomms7896

    CrossRef Google Scholar

    [29]
    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation New York: Springer p 518

    Google Scholar

    [30]
    Fischer C F, Godefroid M, Brage T, Jönsson P, and Gaigalas G 2016 J. Phys. B 49 182004 doi: 10.1088/0953-4075/49/18/182004

    CrossRef Google Scholar

    [31]
    Johnson W R 2007 Atomic Structure Theory-Lectures on Atomic Physics New York: Springer p 185

    Google Scholar

    [32]
    Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å, and Fischer C F 1995 Phys. Rev. E 52 4499 doi: 10.1103/PhysRevE.52.4499

    CrossRef Google Scholar

    [33]
    Verdebout S, Jönsson P, Gaigalas G, Godefroid M, and Fischer C F 2010 J. Phys. B 43 074017 doi: 10.1088/0953-4075/43/7/074017

    CrossRef Google Scholar

    [34]
    Lu B, Zhang T, Chang H, Li J, Wu Y, and Wang J 2019 Phys. Rev. A 100 012504 doi: 10.1103/PhysRevA.100.012504

    CrossRef Google Scholar

    [35]
    Fischer C F, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184 doi: 10.1016/j.cpc.2018.10.032

    CrossRef Google Scholar

    [36]
    Sansonetti J E and Nave G 2010 J. Phys. Chem. Ref. Data 39 033103 doi: 10.1063/1.3449176

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(3)

    1. Klüsener, V., Pucher, S., Yankelev, D. et al. Long-Lived Coherence on a μHz Scale Optical Magnetic Quadrupole Transition. Physical Review Letters, 2024, 132(25): 253201. DOI:10.1103/PhysRevLett.132.253201
    2. Zanon-Willette, T., Impens, F., Arimondo, E. et al. Engineering quantum control with optical transitions induced by twisted light fields. Physical Review A, 2023, 108(4): 043513. DOI:10.1103/PhysRevA.108.043513
    3. Lu, X., Guo, F., Wang, Y. et al. MF -dependent hyperfine-induced 5s5p P0o 3 -5s2 S0 1 clock transition rates in an external magnetic field for Sr 87. Physical Review A, 2023, 108(1): 012820. DOI:10.1103/PhysRevA.108.012820

    Other cited types(0)

Catalog

    Article views (125) PDF downloads (126) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return